- 集合与常用逻辑用语
- 函数与导数
- 函数的定义
- 区间
- + 函数的定义域
- 具体函数的定义域
- 抽象函数的定义域
- 复合函数的定义域
- 实际问题中的定义域
- 函数的值域
- 函数的解析式
- 相等函数
- 函数的表示方法
- 分段函数
- 映射
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
对于函数
和
,若存在区间
,使
在区间
上恒成立,则称区间
是函数
和
的“公共邻域”.设函数
的反函数为
,函数
的图像与函数
的图像关于点
对称.
(1)求函数
和
的解析式;
(2)若
,求函数
的定义域;
(3)是否存在实数
,使得区间
是
和
的“公共邻域”,若存在,求出
的取值范围;若不存在,说明理由.













(1)求函数


(2)若


(3)是否存在实数




