- 集合与常用逻辑用语
- 判断命题的充分不必要条件
- + 根据充分不必要条件求参数
- 充分条件与判定定理
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设
是各项均为非零实数的数列
的前n项和,给出如下两个命题上:命题p:
是等差数列;命题q:等式
对任意
恒成立,其中k,b是常数.
(1)若p是q的充分条件,求k,b的值;
(2)对于(1)中的k与b,问p是否为q的必要条件,请说明理由;
(3)若p为真命题,对于给定的正整数n
和正数M,数列
满足条件
,试求
的最大值.






(1)若p是q的充分条件,求k,b的值;
(2)对于(1)中的k与b,问p是否为q的必要条件,请说明理由;
(3)若p为真命题,对于给定的正整数n




已知集合
,B={x∈R|-1<x<m+1},若x∈B成立的一个充分条件是x∈A,则实数m的取值范围是( )

A.m≥2 | B.m≤2 |
C.m>2 | D.-2<m<2 |