1.单选题- (共5题)
2.填空题- (共8题)
7.
工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C的射线OC即是∠AOB的平分线.做法中用到全等三角形判定的依据是______.

3.解答题- (共9题)
17.
问题探究:如图1,在△ABC中,点D是BC的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.

①BE、CF与EF之间的关系为:BE+CF EF;(填“>”、“=”或“<”)
②若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明.
问题解决:如图2,在四边形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=130°,以D为顶点作∠EDF=65°,∠EDF的两边分别交AB、AC于E、F两点,连接EF,探索线段BE、CF、EF之间的数量关系,并加以证明.

①BE、CF与EF之间的关系为:BE+CF EF;(填“>”、“=”或“<”)
②若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明.
问题解决:如图2,在四边形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=130°,以D为顶点作∠EDF=65°,∠EDF的两边分别交AB、AC于E、F两点,连接EF,探索线段BE、CF、EF之间的数量关系,并加以证明.
20.
如图,Rt△ABC中,∠A=90°.

(1)利用圆规和直尺,在∠A的内部找一个点P,使点P到AB、AC的距离相等,且PB=PC.(不写作法,保留作图痕迹)
(2)若BC的垂直平分线交直线AB于点E,AC=12、AB=8.求AE的长.

(1)利用圆规和直尺,在∠A的内部找一个点P,使点P到AB、AC的距离相等,且PB=PC.(不写作法,保留作图痕迹)
(2)若BC的垂直平分线交直线AB于点E,AC=12、AB=8.求AE的长.
21.
苏科版《数学》八年级上册第35页第2题,介绍了应用构造全等三角形的方法测量了池塘两端A、B两点的距离.星期天,爱动脑筋的小刚同学用下面的方法也能够测量出家门前池塘两端A、B两点的距离.他是这样做的:
选定一个点P,连接PA、PB,在PM上取一点C,恰好有PA=14m,PB=13m,PC=5m,BC=12m,他立即确定池塘两端A、B两点的距离为15m.
小刚同学测量的结果正确吗?为什么?
选定一个点P,连接PA、PB,在PM上取一点C,恰好有PA=14m,PB=13m,PC=5m,BC=12m,他立即确定池塘两端A、B两点的距离为15m.
小刚同学测量的结果正确吗?为什么?

试卷分析
-
【1】题量占比
单选题:(5道)
填空题:(8道)
解答题:(9道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:22