刷题首页
题库
高中数学
题干
已知抛物线的顶点在原点,准线方程为
,
是焦点,过点
的直线与抛物线交于
两点,直线
分别交抛物线于点
(1)求抛物线的方程及
的值;
(2)记直线
的斜率分别为
,证明:
为定值.
上一题
下一题
0.99难度 解答题 更新时间:2020-03-22 11:11:24
答案(点此获取答案解析)
同类题1
已知抛物线
和直线
,过直线
上任意一点
作抛物线的两条切线,切点分别为
.
(1)判断直线
是否过定点?若过定点,求出定点坐标;若不过定点,说明理由;
(2)求
的面积的最小值.
同类题2
已知抛物线
:
.
(Ⅰ)
、
是抛物线
上不同于顶点
的两点,若以
为直径的圆经过抛物线的顶点,试证明直线
必过定点,并求出该定点的坐标;
(Ⅱ)在(Ⅰ)的条件下,抛物线在
、
处的切线相交于点
,求
面积的取值范围.
同类题3
过原点作两条互相垂直的直线分别交抛物线
于
两点(
均不与坐标原点重合),已知抛物线的焦点
到直线
距离的最大值为3,则
( )
A.
B.2
C.3
D.6
同类题4
已知点
在抛物线
:
的准线上,过点
作抛物线
的两条切线,切点分别为
,
.
(1)证明:
为定值;
(2)当点
在
轴上时,过点
作直线
,
交抛物线
于
,
两点,满足
.问:直线
是否恒过定点
,若存在定点,求出点
的坐标;若不存在,请说明理由.
同类题5
已知抛物线
,过原点作两条互相垂直的直线分别交
于
两点(
均不与坐标原点重合),则抛物线的焦点
到直线
距离的最大值为( )
A.
B.
C.
D.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
抛物线中的定点、定值
抛物线中的直线过定点问题
抛物线中的定值问题