刷题首页
题库
高中数学
题干
设函数
为定义在
上的奇函数.
(1)求实数
的值;
(2)判断函数
的单调性,并用定义法证明
在
上的单调性.
上一题
下一题
0.99难度 解答题 更新时间:2020-03-23 10:24:55
答案(点此获取答案解析)
同类题1
设函数
是定义在
上的函数,并且满足下面三个条件:(1)对正数
,都有
;(2)当
时,
;(3)
;
(1)求
和
的值;
(2)如果不等式
成立,求
的取值范围;
(3)如果存在正数
,使不等式
有解,求正数
的取值范围.
同类题2
已知函数
.
(1)若
,试证明
在区间(
)上单调递增;
(2)若
,且
在区间
上单调递减,求
的取值范围.
同类题3
定义在
R
上的函数
满足对任意实数
,总有
,且当
时,
.
(1)试求
的值;
(2)判断
的单调性并证明你的结论;
(3)设
,若
,试确定
的取值范围.
同类题4
已知函数
.
(1)判断函数
在
上的单调性并证明;
(2)判断函数
的奇偶性,并求
在区间
上的最大值与最小值.
同类题5
下列函数中,在其定义域内既是奇函数又单调递增的函数是
A.
B.
C.
D.
相关知识点
函数与导数
函数及其性质
函数的基本性质
函数的单调性
定义法判断函数的单调性
由奇偶性求函数解析式