刷题首页
题库
高中数学
题干
已知动圆P恒过定点
,且与直线
相切.
(Ⅰ)求动圆P圆心的轨迹M的方程;
(Ⅱ)正方形ABCD中,一条边AB在直线y=x+4上,另外两点C、D在轨迹M上,求正方形的面积.
上一题
下一题
0.99难度 解答题 更新时间:2019-03-28 05:42:59
答案(点此获取答案解析)
同类题1
已知动圆
过定点
,且和直线
相切,动圆圆心
形成的轨迹是曲线
,过点
的直线与曲线
交于
两个不同的点.
(1)求曲线
的方程;
(2)在曲线
上是否存在定点
,使得以
为直径的圆恒过点
?若存在,求出
点坐标;若不存在,说明理由.
同类题2
与圆
外切,又与
轴相切的圆的圆心的轨迹方程是( )
A.
B.
(
)和
C.
(
)
D.
(
)和
(
)
同类题3
已知过
的动圆恒与
轴相切,设切点为
是该圆的直径.
(Ⅰ)求
点轨迹
的方程;
(Ⅱ)当
不在
y
轴上时,设直线
与曲线
交于另一点
,该曲线在
处的切线与直线
交于
点.求证:
恒为直角三角形.
同类题4
已知平面内一动点
(
)到点
的距离与点
到
轴的距离的差等于1,
(1)求动点
的轨迹
的方程;
(2)过点
的直线
与轨迹
相交于不同于坐标原点
的两点
,求
面积的最小值.
同类题5
已知动点
到直线
的距离比到定点
的距离大1.
(1)求动点
的轨迹
的方程.
(2)若
为直线
上一动点,过点
作曲线
的两条切线
,
,切点为
,
,
为
的中点.
①求证:
轴;
②直线
是否恒过一定点?若是,求出这个定点的坐标;若不是,请说明理由.
相关知识点
平面解析几何
圆锥曲线
抛物线
抛物线的定义
利用抛物线定义求动点轨迹
求直线与抛物线的交点坐标