刷题首页
题库
高中数学
题干
已知椭圆
过点
,离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若
,
分别是椭圆
与
轴的两个交点,过点
且斜率不为
的直线
与椭圆
交于
,
两点,直线
过点
,求证:直线
过点
.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-17 01:16:12
答案(点此获取答案解析)
同类题1
已知椭圆C:
的右焦点为
,过点F的直线交椭圆C于A,B两点,且AB的中点坐标为
求椭圆C的方程;
若椭圆的下顶点为D,经过点
且斜率为k的直线与椭圆C交于不同两点P,
(均异于点
),证明:直线DP与DQ的斜率之和为定值.
同类题2
在平面直角坐标系
xOy
中,双曲线
:
经过点
,其中一条近线的方程为
,椭圆
:
与双曲线
有相同的焦点
椭圆
的左焦点,左顶点和上顶点分别为
F
,
A
,
B
,且点
F
到直线
AB
的距离为
.
求双曲线
的方程;
求椭圆
的方程.
同类题3
已知点
P
是椭圆
(
)上的一点,
,
分别是椭圆左右两个焦点,若
,且焦点三角形的面积为
,又椭圆的长轴是短轴的2倍.
(1)求出椭圆的方程;
(2)若
为钝角,求出点
P
横坐标的取值范围.
同类题4
已知椭圆
的离心率为
,点
在椭圆上,
,
分别为椭圆
的上、下顶点,点
.
(1)求椭圆
的方程;
(2)若直线
与椭圆
的另一交点分别为
,证明:直线
过定点.
同类题5
已知椭圆
的离心率为
,左、右焦点分别为
,
,且
,
:
与该椭圆有且只有一个公共点.
(1)求椭圆标准方程;
(2)过点
的直线
与
:
相切,且与椭圆相交于
,
两点,试探究
,
的数量关系.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的直线过定点问题