刷题首页
题库
初中数学
题干
如图①,
的顶点
在正方形
两条对角线的交点处,
,将
绕点
旋转,旋转过程中
的两边分别与正方形
的边
和
交于点
和点
(点
与点
,
不重合).
(1)如图①,当
时,求
,
,
之间满足的数量关系,并证明;
(2)如图②,将图①中的正方形
改为
的菱形,其他条件不变,当
时,(1)中的结论变为
,请给出证明;
(3)在(2)的条件下,若旋转过程中
的边
与射线
交于点
,其他条件不变,探究在整个运动变化过程中,
,
,
之间满足的数量关系,直接写出结论,不用加以证明.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-11 10:48:59
答案(点此获取答案解析)
同类题1
如图,在正方形ABCD中,E为对角线BD上的一点,点F在AD的延长线上,且∠CEF=90°,EF交CD于H,分别过点F,点C作EC和EF的平行线,交于点
A.
(1)证明:AE=CE;
(2)证明:四边形ECGF是正方形;
(3)若正方形ABCD的边长为
,且BE=BC,求此时ΔEDF的面积.
同类题2
如图1,将矩形纸片ABCD沿AC剪开,得到△ABC和△AC
A.
(1)将图1中的△ABC绕点A顺时针旋转∠α,使∠α=∠BAC,得到图2所示的△ABC′,过点C′作C′E∥AC,交DC的延长线于点E,试判断四边形ACEC′的形状,并说明理由.
(2)若将图1中的△ABC绕点A顺时针旋转,使B,A,D在同一条直线上,得到图3所示的△ABC′,连接CC′,过点A作AF⊥CC′于点F,延长AF至点G,使FG=AF,连接CG,C′G,试判断四边形ACGC′的形状,并说明理由.
同类题3
如图,正方形ABCD的边CD在正方形ECGF的边CE上,O是EG的中点,∠EGC的平分线GH过点D,交BE于点H,连接OH,FH,EG与FH交于点M,对于下面四个结论:①GH⊥BE;②BG=EG;③△MFG为等腰三角形;④DE:AB=1+
:1,其中正确结论的序号为_________.
同类题4
请阅读下列材料:
问题:如图,在正方形
和平行四边形
中,点
,
,
在同一条直线上,
是线段
的中点,连接
,
.
探究:当
与
的夹角为多少度时,平行四边形
是正方形?
小聪同学的思路是:首先可以说明四边形
是矩形;然后延长
交
于点
,构造全等三角形,经过推理可以探索出问题的答案.
请你参考小聪同学的思路,探究并解决这个问题.
(1)求证:四边形
是矩形;
(2)
与
的夹角为________度时,四边形
是正方形.
理由:
同类题5
如图,在正方形
中,
是
的中点,
是
上一点,且
,下列结论:
①
、②
、③
、④
其中正确结论的个数为( )
A.
B.
C.
D.
相关知识点
图形的性质
四边形
特殊的平行四边形
正方形的判定与性质综合
根据正方形的性质与判定证明