刷题首页
题库
初中数学
题干
如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点
A.若∠CBF=20°,则∠DEF的度数是( )
B.25°
C.40°
D.45°
E.50°
上一题
下一题
0.99难度 单选题 更新时间:2019-07-11 06:14:08
答案(点此获取答案解析)
同类题1
如图,在正方形ABCD中,对角线AC、BD相交于点O,E、F分别在OD、OC上的动点,且DE=CF,连接DF、AE,AE的延长线交DF于点M,连接OM.
(1)求证:△ADE≌△DCF;
(2)求证:AM⊥DF;
(3)当CD=AF时,试判断△MOF的形状,并说明理由.
同类题2
小明与同学们在数学动手实践操作活动中,将锐角为
的直角三角板MPN的一个锐角顶点P与正方形ABCD的顶点A重合,正方形ABCD固定不动,然后将三角板绕着点A旋转,
的两边分别与正方形的边BC、DC或其延长线相交于点E、F,连结E
A.
(探究发现)
在三角板旋转过程中,当
的两边分别与正方形的边CB、DC相交时,如图
所示,请直接写出线段BE、DF、EF满足的数量关系:______.
(拓展思考)
在三角板旋转过程中,当
的两边分别与正方形的边CB、DC的延长线相交时,如图
所示,则线段BE、DF、EF又将满足怎样的数量关系:______,并证明你的结论;
(创新应用)
若正方形的边长为4,在三角板旋转过程中,当
的一边恰好经过BC边的中点时,试求线段EF的长.
同类题3
正方形
中,将一个直角三角板的直角顶点与点
重合,一条直角边与边
交于点
(点
不与点
和点
重合),另一条直角边与边
的延长线交于点
.
如图①,求证:
;
如图②,此直角三角板有一个角是
,它的斜边
与边
交于
,且点
是斜边
的中点,连接
,求证:
;
在
的条件下,如果
,那么点
是否一定是边
的中点?请说明你的理由.
同类题4
(探索发现)
如图①,将
沿中位线
折叠,使点
的对应点
落在
边上,再将
分别沿直线
和直线
折叠,使得
、
的对应点恰好落在点
处,折叠后的三个三角形拼合形成一个四边形
,请判断四边形
的形状.小刚在探索这个问题时发现四边形
是矩形,并展示了如下的证明方法:
证明:∵
是
的中位线,
∴
,
,
由折叠性质可知
,
,
,
,
∴______,
,
∴
,
∴四边形
是平行四边形.
∵______,
∴四边形
是矩形.
(1)请补全小刚的证明过程;
(2)连接
,当
时,直接写出线段
、
、
之间的数量关系:______;
(理解运用)
(3)如图②,在四边形
中,
,
,
,
,
,点
为
边的中点,把四边形
折叠成如图2所示的正方形
,顶点
、
落在点
处,顶点
、
落在线段
上的点
处,求
的长;
(拓展迁移)
如图③,在四边形
中,
,
,
,
,
,沿直线
折叠四边形
,使得点
与点
重合,点
落在
边的点
处,点
为
上一点,再沿直线
折叠四边形
,此时点
与点
恰好重合,得到新的四边形
.
(4)判断四边形
的形状,并说明理由.
同类题5
已知正方形
中,点
、
、
、
分别在边
、
、
、
上,“爱琢磨”学习小组的小明说“若
,则
”,小红说“若
,则
”.则他们的说法( )
A.小明正确
B.小红正确
C.都正确
D.都不正确
相关知识点
图形的性质
四边形
特殊的平行四边形
正方形的判定与性质综合
根据正方形的性质与判定证明