刷题首页
题库
高中数学
题干
如图,在三棱锥
中,平面
平面
,点
在
上,
(Ⅰ)求证:
;
(Ⅱ)若二面角
的余弦值为
,求三棱锥
的体积.
上一题
下一题
0.99难度 解答题 更新时间:2017-06-18 12:32:16
答案(点此获取答案解析)
同类题1
如图,在三棱柱
中,每个侧面均为正方形,
为底边
的中点,
为侧棱
的中点.
(Ⅰ)求证:
∥平面
;
(Ⅱ)求证:
平面
;
(Ⅲ)求直线
与平面
所成角的正弦值.
同类题2
如图,在四棱锥
中,
,底面
为平行四边形,
平面
.
(
)求证:
平面
;
(
)若
,
,
,求三棱锥
的体积;
(
)设平面
平面
直线
,试判断
与
的位置关系,并证明.
同类题3
如图,正方体
中,
,
,
,
分别是棱
,
,
,
的中点.
(1)证明:
;
(2)证明:
平面
.
同类题4
在四棱柱
中,
底面
,底面
为菱形,
为
与
交点,已知
,
.
(Ⅰ)求证:
平面
;
(Ⅱ)求证:
∥平面
;
(Ⅲ)设点
在
内(含边界),且
,说明满足条件的点
的轨迹,并求
的最小值.
同类题5
如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB∥CD,AD=CD=1,
∠BAD=120°,PA=
,∠ACB=90°,M是线段PD上的一点(不包括端点).
(1)求证:BC⊥平面PAC;
(2)求异面直线AC与PD所成的角的余弦值;
(3)若点M为侧棱PD中点,求直线MA与平面PCD所成角的正弦值.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面垂直的判定与性质
线面垂直的判定
证明线面垂直
求二面角