刷题首页
题库
高中数学
题干
如图,在三棱锥
P-ABC
中,
,
O
是
AC
的中点,
,
,
.
(1)证明:平面
平面
ABC
;
(2)若
,
,
D
是
AB
的中点,求二面角
的余弦值.
上一题
下一题
0.99难度 解答题 更新时间:2019-10-04 03:09:57
答案(点此获取答案解析)
同类题1
如图所示,等腰梯形ABCD中,AB∥CD,AD=AB=BC=1,CD=2,E为CD中点,AE与BD交于点O,将△ADE沿AE折起,使点D到达点P的位置(P∉平面ABCE).
(Ⅰ)证明:平面POB⊥平面ABCE;
(Ⅱ)若直线PB与平面ABCE所成的角为
,求二面角A-PE-C的余弦值.
同类题2
如图,在三棱锥
中,
,
是
AC
的中点,
,
,
.
(1)证明:平面
平面
;
(2)若
,
,求点
A
到平面
的距离.
同类题3
如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥平面ABCD,E为PD的中点,F为AC和BD的交点.
(1)证明:PB∥平面AEC;
(2)证明:平面PAC⊥平面PBD.
同类题4
如图,在四棱锥
P
-
ABCD
中,底面
ABCD
是边长为2菱形,∠
ABC
=60°,
为正三角形,且侧面
PAB
⊥底面
ABCD
.
E
,
M
分别为线段
AB
,
PD
的中点.
(I)求证:
PE
⊥平面
ABCD
;
(II)在棱
CD
上是否存在点
G
,使平面
GAM
⊥平面
ABCD
,请说明理由.并求此时三棱锥D-ACM的体积.
同类题5
如图,在四棱锥
P
-
ABCD
中,底面
ABCD
为正方形,平面
PAD
⊥底面
ABCD
,
PD
⊥
AD
,
PD
=
AD
,
E
为棱
PC
的中点
(
I
)证明:平面
PBC
⊥平面
PCD
;
(
II
)求直线
DE
与平面
PAC
所成角的正弦值;
(
III
)若
F
为
AD
的中点,在棱
PB
上是否存在点
M
,使得
FM
⊥
BD
?若存在,求
的值,若不存在,说明理由.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面垂直的判定与性质
面面垂直的判定
证明面面垂直
求二面角