刷题首页
题库
高中数学
题干
在如图所示的几何体中,四边形
CDEF
为正方形,四边形
ABCD
为梯形,
,
,
,
平面
ABCD
.
求
BE
与平面
EAC
所成角的正弦值;
线段
BE
上是否存在点
M
,使平面
平面
DFM
?若存在,求
的值;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-12 10:09:08
答案(点此获取答案解析)
同类题1
四棱锥
中,底面
为矩形,
.侧面
底面
.
(1)证明:
;
(2)设
与平面
所成的角为
,求二面角
的余弦值.
同类题2
如图,四棱锥中
,
,
与
都是边长为2的等边三角形,
是
的中点.
(Ⅰ)求证:
平面
;
(Ⅱ)求平面
与平面
所成二面角的大小.
同类题3
如图,在四棱锥PABCD中,PA⊥平面ABCD,PB与底面所成的角为45°,底面ABCD为直角梯形,∠ABC=∠BAD=90°,PA=BC=
AD=1.问:在棱PD上是否存在一点E,使得CE∥平面PAB?若存在,求出E点的位置;若不存在,请说明理由.
同类题4
已知
,
,
是
上的点,将
沿
翻折到
,设点
在平面
上的射影为
,当点
在
上运动时,点
( )
A.位置保持不变
B.在一条直线上
C.在一个圆上
D.在一个椭圆上
同类题5
如图所示,在四棱锥P-ABCD中,PC⊥平面ABCD,PC=2,在四边形ABCD中,∠B=∠C=90°,AB=4,CD=1,点M在PB上,PB=4PM,PB与平面ABCD成30°的角.
求证:(1)CM∥平面PAD.
(2)平面PAB⊥平面PAD.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用
求平面的法向量
空间位置关系的向量证明