刷题宝
  • 刷题首页
题库 高中数学

题干

已知定义域为,对任意、都有,当时,,.
(1)求;
(2)证明:在上单调递减;
(3)解不等式:.
上一题 下一题 0.99难度 解答题 更新时间:2019-11-26 11:39:21

答案(点此获取答案解析)

同类题1

已知函数f(x)=a+是奇函数,a∈R是常数.
(Ⅰ)试确定a的值;
(Ⅱ)用定义证明函数f(x)在区间(0,+∞)上是减函数;
(Ⅲ)若f(2t+1)+f(1-t)<0成立,求t的取值范围.

同类题2

已知定义域为的函数是奇函数.
(1)求的值;
(2)猜测的单调性,并用定义证明;
(3)若对任意,不等式恒成立,求实数的取值范围.

同类题3

已知函数定义在上且满足下列两个条件:
①对任意都有;②当时,有.
(1)证明函数在上是奇函数;
(2)判断并证明的单调性.
(3)若,试求函数的零点.

同类题4

在实数集R中定义一种运算“”,对于任意给定的为唯一确定的实数,且具有性质:
(1)对任意;
(2)对任意;
(3)对任意.
关于函数的性质,有如下说法:
①函数的最小值为3;
②函数为奇函数;
③函数的单调递增区间为.
其中所有正确说法的个数为( )
A.3B.2C.1D.0

同类题5

已知函数,其中为自然对数的底数.
(1)证明:在上单调递增;
(2)函数,如果总存在,对任意都成立,求实数的取值范围.
相关知识点
  • 函数与导数
  • 函数及其性质
  • 函数的基本性质
  • 函数的单调性
  • 定义法判断函数的单调性
  • 赋值法
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)