- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 平移
- 轴对称
- + 旋转
- 生活中的旋转现象
- 旋转三要素
- 旋转中的规律性问题
- 画旋转图形
- 旋转对称图形
- 坐标与图形变换——旋转
- 中心对称
- 图案设计
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在边长为1的正方形网格中,△ABC的顶点均在格点上.
(1)画出△ABC关于原点成中心对称的△A′B′C′,并直接写出△A′B′C′各顶点的坐标;
(2)连接BC′,B′C,求四边形BCB′C′的面积.
(1)画出△ABC关于原点成中心对称的△A′B′C′,并直接写出△A′B′C′各顶点的坐标;
(2)连接BC′,B′C,求四边形BCB′C′的面积.

如图,在平面直角坐标系中,△ABC的三个顶点分别为A(-4,3),B(-1,2),C(-2,1).
(1)画出△ABC关于原点O对称的△A1B1C1,并写出点B1的坐标;
(2)画出△ABC绕原点O顺时针方向旋转90°得到的△A2B2C2,并写出点A2的坐标.
(1)画出△ABC关于原点O对称的△A1B1C1,并写出点B1的坐标;
(2)画出△ABC绕原点O顺时针方向旋转90°得到的△A2B2C2,并写出点A2的坐标.

如图,在平面直角坐标系中,已知点
,
轴,垂足为A.
将点B绕原点逆时针方向旋转
后记作点C,求点C的坐标;
与
关于原点对称,写出点
、
的坐标.









如图,在边长为1的小正方形组成的网格中,△ABC的顶点均在格点上,请按要求完成下列各题:
(1)以原点O为对称中心作△ABC的中心对称图形,得到△A1B1C1,请画出△A1B1C1,并直接写出A1、B1、C1的坐标;
(2)再将△A1B1C1绕着点A1顺时针旋转90°,得到△A1B2C2,请画出△A1B2C2,并直接写出点B2、C2的坐标.
(1)以原点O为对称中心作△ABC的中心对称图形,得到△A1B1C1,请画出△A1B1C1,并直接写出A1、B1、C1的坐标;
(2)再将△A1B1C1绕着点A1顺时针旋转90°,得到△A1B2C2,请画出△A1B2C2,并直接写出点B2、C2的坐标.

如图,平面直角坐标系中,每个小正方形边长都是1.
(1)按要求作图:
①以坐标原点O为旋转中心,将△ABC逆时针旋转90°得到△A1B1C1;
②作出△A1B1C1关于原点成中心对称的中心对称图形△A2B2C2.
(2)△A2B2C2中顶点B2坐标为 .
(1)按要求作图:
①以坐标原点O为旋转中心,将△ABC逆时针旋转90°得到△A1B1C1;
②作出△A1B1C1关于原点成中心对称的中心对称图形△A2B2C2.
(2)△A2B2C2中顶点B2坐标为 .
