- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形性质理解
- 利用矩形的性质求角度
- 根据矩形的性质与判定求线段长
- 根据矩形的性质与判定求面积
- 利用矩形的性质证明
- 求矩形在平面直角坐标系中的坐标
- + 矩形与折叠问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,将矩形纸片ABCD沿EF折叠,使得点C落在边AB上的点H处,点D落在点G处,若∠AHG = 42°,则∠GEF的度数为( )


A.101° | B.111° |
C.121° | D.131° |
如图所示,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠EFC′=125°,那么∠AEB的度数是 .

如图,矩形纸片ABCD中,AB=6cm,BC=8cm.现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CB1的长为( )


A.![]() | B.![]() | C.8cm | D.10cm |
如图,在矩形ABCD中,点E是CD的中点,将△BCE沿BE折叠后得到△BEF、且点F在矩形ABCD的内部,将BF延长交AD于点

A.若![]() ![]() |

如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,联结AP并延长AP交CD于F点,
(1)求证:四边形AECF为平行四边形;
(2)如果PA=PE,联结BP,求证:△APB≌△EPC.
(1)求证:四边形AECF为平行四边形;
(2)如果PA=PE,联结BP,求证:△APB≌△EPC.

已知点A(0,4),B(7,0),C(7,4),连接AC,BC得到矩形AOBC,点D的边AC上,将边OA沿OD折叠,点A的对应点为A'.若点A'到矩形较长两对边的距离之比为1:3,则点A'的坐标为__ .
如图,在矩形
中,
,
,点
,
分别是
,
上的动点,沿直线
将矩形折叠,点
,
的对应点分别为
,
,连接
,
.若
是以
为斜边的等腰直角三角形,则
的长为__________.

















