若 x 满足 (9−x)(x−4)=4, 求 (4−x)2+(x−9)2 的值.
设 9−x=ax−4=b, 则 (9−x)(x−4)=ab=4,a+b=(9−x)+(x−4)=5 ,
∴(9−x)2+(x−4)2=a2+b2=(a+b)2−2ab=52−2×4=13
请仿照上面的方法求解下面问题:
(1)若 x 满足 (5−x)(x−2)=2, 求 (5−x)2+(x−2)2 的值
(2)已知正方形 ABCD 的边长为 x , E , F 分别是 AD 、 DC 上的点,且 AE=1 , CF=3 ,长方形 EMFD 的面积是 48 ,分别以 MF 、 DF 作正方形,求阴影部分的面积.
当前题号:1 | 题型:解答题 | 难度:0.99
如图,矩形ABCD的两条对角线相交于点O,∠ACB=30°,AB=2,则矩形的面积为( )
A.B.2C.4D.
当前题号:2 | 题型:单选题 | 难度:0.99
如图,在矩形ABCD中,AB=16cm,BC=6cm,动点P、Q分别以3cm/s、2cm/s的速度从点A、C同时出发,点Q从点C向点D移动.
(1)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,点P、Q分别从点A、C同时出发,问经过多长时间P、Q两点之间的距离是10cm?
(2)若点P沿着AB→BC→CD移动,点P、Q分别从点A、C同时出发,点Q从点C移动到点D停止时,点P随点Q的停止而停止移动,试探求经过多长时间△PBQ的面积为12cm2
当前题号:3 | 题型:解答题 | 难度:0.99
如图,矩形内有两个相邻的正方形,面积分别为4和2, 那么阴影部分的面积为_________.
当前题号:4 | 题型:填空题 | 难度:0.99
如图1,在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,AD=a,BC=b,AB=c,
操作示例
我们可以取直角梯形ABCD的一腰CD的中点P,过点P作PE∥AB,裁掉△PEC,并将△PEC拼接到△PFD的位置,构成新的图形(如图2).
思考发现
小明在操作后发现,该剪拼方法就是先将△PEC绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上.又因为在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,则∠FDP+∠ADP=180°,所以AD和DF在同一条直线上,那么构成的新图形是一个四边形,进而根据平行四边形的判定方法,可以判断出四边形ABEF是一个平行四边形,而且还是一个特殊的平行四边形——矩形.
【小题1】图2中,矩形ABEF的面积是 ;(用含a,b,c的式子表示)

【小题2】类比图2的剪拼方法,请你就图3(其中AD∥BC)和图4(其中AB∥DC)的两种情形分别画出剪拼成一个平行四边形的示意图.

【小题3】小明通过探究后发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.
如图5的多边形中,AE=CD,AE∥CD,能否象上面剪切方法一样沿一条直线进行剪切,拼成一个平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.
当前题号:5 | 题型:解答题 | 难度:0.99
如图,把长方形纸片放入平面直角坐标系中,使分别落在轴的的正半轴上,连接,且
(1)求点的坐标;
(2)将纸片折叠,使点与点重合(折痕为),求折叠后纸片重叠部分的面积;
(3)求所在直线的函数表达式,并求出对角线与折痕交点的坐标.
当前题号:6 | 题型:解答题 | 难度:0.99
如图,在矩形ABCD中,AB=6,BC=8,过对角线交点O作EF⊥AC交AD于点E,交BC于点F,则DE的长是(   )
A.1B.C.2D.
当前题号:7 | 题型:单选题 | 难度:0.99
(1)如图,若图中小正方形的边长为1,则△ABC的面积为________.
(2)反思(1)的解题过程,解决下面问题:若2(其中ab均为正数) 是一个三角形的三条边长,则此三角形的面积为_________.
当前题号:8 | 题型:填空题 | 难度:0.99