- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 平行四边形的性质
- 平行四边形的判定
- 平行四边形的判定与性质综合
- + 三角形中位线
- 与三角形中位线有关的求解问题
- 三角形中位线与三角形面积问题
- 与三角形中位线有关的证明
- 三角形中位线的实际应用
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,已知△ABC,现将边BA延长至点D,使AD=AB,延长AC至点E,使CE=2A

A.延长CB至点F,使BF=3BC,分别连结DE,DF,EF,得到△DEF,若△ABC的面积为1,则阴影部分的面积为______. |

如图,AD为△ABC的中线,BE为△ABD的中线.

(1)∠ABE=15°, ∠BAD=40°,求∠BED的度数;
(2)若△ABC的面积为80,BD=16,求E到BC边的距离为多少.

(1)∠ABE=15°, ∠BAD=40°,求∠BED的度数;
(2)若△ABC的面积为80,BD=16,求E到BC边的距离为多少.
如图所示,△ABC中,点D、E、F分别在三边上,E是AC的中点,AD、BE、CF交于一点G,BD=2DC,S△GEC=3,S△GDC=4,则△ABC的面积是( )


A.25 | B.30 | C.35 | D.40 |
如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形,四边形ABCD还应满足的一个条件是______.

我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.

(1)如图,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;
(2)若改变(1)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状(不必证明).

(1)如图,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;
(2)若改变(1)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状(不必证明).
小明的爸爸承包了一个鱼塘,小明想知道鱼塘的长(即
间的距离).他通过下面的方法测量
间的距离:先在
外选一点
,然后测出
的中点
,并测得
的长为
,由此他就知道了
间的距离.请你回答
间的距离是______.










