- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 几何图形初步
- 相交线与平行线
- 三角形
- + 四边形
- 多边形及其内角和
- 平行四边形
- 特殊的平行四边形
- 圆
- 命题与证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,边长为6的正方形
中,
分别是
上的点,
,
为垂足.
(1)如图①, AF=BF,AE=2
,点T是射线PF上的一个动点,则当△ABT为直角三角形时,求AT的长;
(2)如图②,若
,连接
,求证:
.





(1)如图①, AF=BF,AE=2

(2)如图②,若




如图,矩形纸片ABCD中,AB=8cm,把矩形纸片沿直线AC折叠,点B落在点E处,AE交DC于点F,若AF=
cm,则AD的长为( )



A.4cm | B.5cm | C.6cm | D.7cm |
以下是通过折叠正方形纸片得到等边三角形的步骤取一张正方形的纸片进行折叠,具体操作过程如下:
第一步:如图,先把正方形ABCD对折,折痕为MN;
第二步:点E在线段MD上,将△ECD沿EC翻折,点D恰好落在MN上,记为点P,连接BP可得△BCP是等边三角形
问题:在折叠过程中,可以得到PB=PC;依据是________________________ .
第一步:如图,先把正方形ABCD对折,折痕为MN;
第二步:点E在线段MD上,将△ECD沿EC翻折,点D恰好落在MN上,记为点P,连接BP可得△BCP是等边三角形
问题:在折叠过程中,可以得到PB=PC;依据是

已知矩形ABCD,其中AD>AB,依题意先画出图形,然后解答问题.
(1)F为DC边上一点,把△ADF沿AF折叠,使点D恰好落在BC上的点E处.在图1中先画出点E,再画出点F,若AB=8,AD=10,直接写出EF的长为 ;
(2)把△ADC沿对角线AC折叠,点D落在点E处,在图2先画出点E,AE交CB于点F,连接BE.求证:△BEF是等腰三角形.
(1)F为DC边上一点,把△ADF沿AF折叠,使点D恰好落在BC上的点E处.在图1中先画出点E,再画出点F,若AB=8,AD=10,直接写出EF的长为 ;
(2)把△ADC沿对角线AC折叠,点D落在点E处,在图2先画出点E,AE交CB于点F,连接BE.求证:△BEF是等腰三角形.

如图,边长为4正方形ABCD中,E为边AD的中点,连接线段EC交BD于点F,点M是线段CE延长线上的一点,且∠MAF为直角,则DM的长为_____.

如图,在▱ABCD中,对角线AC与BD相交于点O,且AB⊥AC.若AD=5,AB=3,则对角线BD的长为( )


A.![]() ![]() | B.2![]() | C.9 | D.8 |