- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 勾股定理
- + 勾股定理的应用
- 利用勾股定理求梯子滑落高度
- 利用勾股定理求旗杆高度
- 利用勾股定理求小鸟飞行距离
- 利用勾股定理求大树折断前的高度
- 利用勾股定理解决水杯中筷子问题
- 利用勾股定理解决航海问题
- 利用勾股定理求河宽
- 利用勾股定理求台阶上地毯长度
- 利用勾股定理判断汽车是否超速
- 利用勾股定理判断是否受台风影响
- 利用勾股定理选址使到两地距离相等
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,高速公路上有A、B两点相距25km,C、D为两村庄,已知DA=10km,CB=15km.DA⊥AB于A,CB⊥AB于B,现要在AB上建一个服务站E,使得C、D两村庄到E站的距离相等,则AE的长是( )km.


A.5 | B.10 | C.15 | D.25 |
如图,港口
在观测站
的正西方向,
,某船从港口
出发,沿北偏西
方向航行一段距离后到达
处,此时从观测站
处测得该船位于北偏西
的方向,则该船航行的距离(即
的长)为( )











A.![]() | B.![]() | C.![]() | D.![]() |
《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是:一根竹子原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面高度是_________.尺。
2019年第18号台风“米娜”于9月29日早晨5点整,由位于台湾省周边的B岛东南方约980千米的西北太平洋洋面上(A点)生成,向西北方向移动.并于9月30日20时30分到达B岛后风力增强且转向,一路向北于24小时后在浙江省舟山市登陆.“米娜”在登录后风力减弱且再一次转向,以每小时20千米的速度向北偏东30º的方向移动,距台风中心170千米的范围内是受台风影响的区域.已知上海位于舟山市北偏西7º方向,且距舟山市250千米.
(1)台风中心从生成点(A点)到达B岛的速度是每小时多少千米?
(2)10月2日上海受到“米娜”影响,那么上海遭受这次台风影响的时间有多长?(结果保留整数,参考数据:
,
,
;
,
,
.)

(1)台风中心从生成点(A点)到达B岛的速度是每小时多少千米?
(2)10月2日上海受到“米娜”影响,那么上海遭受这次台风影响的时间有多长?(结果保留整数,参考数据:








在古城路灯改造中,如图,一架长25米的云梯,斜靠在路灯柱上,梯子底端D距离墙15米,按改造要求需要把C处灯具升高4米,(由于考虑安全因素,梯子底端距离墙不得少于8米,安装员上梯最高能摸到梯子顶端).请你通过计算探求这架云梯能不能完成这次改造任务?

如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度(滑轮上方的部分忽略不计)为( )


A.12 m | B.13 m | C.16 m | D.17 m |