- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 勾股定理
- + 勾股定理的应用
- 利用勾股定理求梯子滑落高度
- 利用勾股定理求旗杆高度
- 利用勾股定理求小鸟飞行距离
- 利用勾股定理求大树折断前的高度
- 利用勾股定理解决水杯中筷子问题
- 利用勾股定理解决航海问题
- 利用勾股定理求河宽
- 利用勾股定理求台阶上地毯长度
- 利用勾股定理判断汽车是否超速
- 利用勾股定理判断是否受台风影响
- 利用勾股定理选址使到两地距离相等
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问水深、葭长备几何?”这个数学问题的意思是说:“有一个水池,水面是一个边长为
丈(
丈
尺)的正方形,在水池正中央长有一根芦苇,芦苇露出水面
尺.如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各是多少?”设这个水池的深度是
尺,根据题意,可列方程为__________ .






小芳在喝易拉罐饮料的时候,发现如果沿着罐内壁
竖直放置吸管,露在外面部分
厘米;如果尽最大长度往里放置,吸管正好和罐顶持平,已知易拉罐的底部是直径
为8厘米的圆,请你求出吸管的长度.




如图,有两棵树,一棵高10米,另一棵高5米,两树相距12米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行( )


A.6米 | B.8米 | C.10米 | D.13米 |
如图,AB⊥CD于B,△ABD和△BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的长为( ).


A.12 | B.7 | C.5 | D.13 |
如图,铁路MN和公路PQ在点O处交汇,∠QON=30°,公路PQ上A处距O点240米,如果火车行驶时,周围200米以内会受到噪音的影响,那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,求A处受噪音影响的时间。

一只渔船在灯塔C的正西方向10海里的A处,以20海里/时的速度沿北偏东30°方向行驶.

(1)多长时间后,渔船距灯塔最近?
(2)多长时间后,渔船行驶到灯塔的正北方向?此时渔船距灯塔有多远?(其中:202-102=17.32)

(1)多长时间后,渔船距灯塔最近?
(2)多长时间后,渔船行驶到灯塔的正北方向?此时渔船距灯塔有多远?(其中:202-102=17.32)