- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 勾股定理
- + 勾股定理的应用
- 利用勾股定理求梯子滑落高度
- 利用勾股定理求旗杆高度
- 利用勾股定理求小鸟飞行距离
- 利用勾股定理求大树折断前的高度
- 利用勾股定理解决水杯中筷子问题
- 利用勾股定理解决航海问题
- 利用勾股定理求河宽
- 利用勾股定理求台阶上地毯长度
- 利用勾股定理判断汽车是否超速
- 利用勾股定理判断是否受台风影响
- 利用勾股定理选址使到两地距离相等
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,某小区有一块直角三角形绿地,量得直角边AC=4m,BC=3m,考虑到这块绿地周围还有足够多的空余部分,于是打算将这块绿地扩充成等腰三角形,且扩充部分是以AC为一条直角边的直角三角形,则扩充的方案共有_____种.

如图,将一根长18cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是________.

如右图所示,某警察在点A(−2,4)接到任务,前去阻截在点B(−10,0)的劫包摩托车,劫包摩托车从点B沿x轴向原点方向匀速行驶,警察立即拦下一辆摩托车前去阻截,若两辆摩托车行驶速度相等,则相遇时警察的坐标为__________. 

有一圆柱形油罐,如图所示,要从A点环绕油罐建梯子到B点,正好B点在A点的正上方,已知油罐的底面圆的半径为2cm,高AB为5m,问:所建梯子最短需多少米?(π取3)

如图:一个三级台阶,它的每一级的长,宽和高分别是50cm,30cm,10cm,A和B是这个台阶的两个相对的端点,A点上有一只壁虎,它想到B点去吃可口的食物,请你想一想,这只壁虎从A点出发,沿着台阶面爬到B点,最短路线的长是______________cm.

在△ABC中,∠A=90°,∠A、∠B、∠C的对边长分别为a、b、c,则下列结论错误的是( )
A.a2+b2=c2 | B.b2+c2=a2 | C.![]() | D.![]() |
如图,在ABC中,AB=AC=6
,∠BAC=90°,点D、E为BC边上的两点,分别沿AD、AE折叠,B、C两点重合于点F,若DE=5,则AD的长为_____.

