- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 勾股定理
- + 勾股定理的应用
- 利用勾股定理求梯子滑落高度
- 利用勾股定理求旗杆高度
- 利用勾股定理求小鸟飞行距离
- 利用勾股定理求大树折断前的高度
- 利用勾股定理解决水杯中筷子问题
- 利用勾股定理解决航海问题
- 利用勾股定理求河宽
- 利用勾股定理求台阶上地毯长度
- 利用勾股定理判断汽车是否超速
- 利用勾股定理判断是否受台风影响
- 利用勾股定理选址使到两地距离相等
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,圆柱形容器的底面周长是30cm,高为17cm,在外侧地面S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口内侧距开口出3cm的点F处有一苍蝇,急于捕获苍蝇充饥的蜘蛛所走的最短路线长度是( )


A.![]() | B.25cm | C.![]() | D.30cm |
一消防队员要爬上高12米的建筑物,进行灭火抢险,为安全起见,梯子底端距建筑物至少5米,若梯子顶端恰好到达建筑物顶端,则梯子的长至少为多少米?
一架6.5米长的梯子斜靠在一竖直的墙上,这时梯子与地面接触点到墙根的距离为2.5米,那么梯子的顶端到墙根的距离是________米.
在两条垂直相交的道路上,一辆自行车和一辆摩托车相遇后又分别向北向东驶去,若自行车与摩托车每秒分别行驶7.5米、10米,则10秒后两车相距( )米
A.55 | B.103 | C.125 | D.153 |
如图,某校科技创新兴趣小组用他们设计的机器人,在平坦的操场上进行走展示.输入指令后,机器人从出发点A先向东走10米,又向南走40米,再向西走20米,又向南走40米,再向东走70米到达终止点B.求终止点B与原出发点A的距离AB.

在平面直角坐标系中,一束光从A(0,2)发出,经X轴反射,过点B(4,3),则这束光从点A到点B所经过的路径长为_______________;
如图,一圆柱体的底面周长为10cm,高BD为12cm,BC是直径,一只蚂蚁从点D出发沿着圆柱的表面爬行到点C的最短路程为( )cm


A.17 | B.13 | C.12 | D.14 |
如图,小亮拿着等腰三角板玩不小心掉到两墙之间,∠ACB=90°,AC=BC,从三角板的刻度可知AB=20cm,若每块砖的厚度相等,求每块砖的厚度是多少?(结果保留根号)

如图,△ABC中,∠BAC=90°,BC=6,以△ABC的三边向外作正方形,以AC为边的正方形的面积为25cm2,则正方形M的面积为_____cm2.

如图,△ABC中,∠ACB=90°,BC=3,AC=4,点D是AB的中点,将△ACD沿CD翻折得到△ECD,连接AE,BE,则线段BE的长等于( )


A.![]() | B.![]() | C.![]() | D.2 |