- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 勾股定理
- + 勾股定理的应用
- 利用勾股定理求梯子滑落高度
- 利用勾股定理求旗杆高度
- 利用勾股定理求小鸟飞行距离
- 利用勾股定理求大树折断前的高度
- 利用勾股定理解决水杯中筷子问题
- 利用勾股定理解决航海问题
- 利用勾股定理求河宽
- 利用勾股定理求台阶上地毯长度
- 利用勾股定理判断汽车是否超速
- 利用勾股定理判断是否受台风影响
- 利用勾股定理选址使到两地距离相等
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
已知如图,圆柱OO1的底面半径为13cm,高为10cm,一平面平行于圆柱OO1的轴OO1 , 且与轴OO1的距离为5cm,截圆柱得矩形ABB1A1, 则截面ABB1A1的面积是( )


A.240cm2 ![]() | B.240πcm2 ![]() | C.260cm2 ![]() | D.260πcm2 |
小明从超市里买了一瓶外包装为圆柱形的饮料,已知饮料瓶的高为4cm,底面直径为6cm,吸管的长度为8cm.如图,若将吸管从饮料瓶上底面中心插入,设吸管露在外面的长度为h cm,则h的取值范围是______________.

如图,在直角三角形ABC的三边上,向外做三个正方形,其中两个的面积为S3=110,S2=60,则另一个正方形的边长BC为__________.

为给人们的生活带来方便,2017年兴化市准备在部分城区实施公共自行车免费服务.图1是公共自行车的实物图,图2是公共自行车的车架示意图,点A、D、C、E在同一条直线上,CD=35cm,DF=24cm,AF=30cm,FD⊥AE于点D,座杆CE=15cm,且∠EAB=75°.

图 1 图2
(1)求AD的长;
(2)求点E到AB的距离(结果保留整数).
(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)

图 1 图2
如图,某游泳池长48米,小方和小杨进行游泳比赛,从同一处(A点)出发,小方平均速度为3米/秒,小杨为3.1米/秒.但小杨一心想快,不看方向沿斜线(AC方向)游,而小方直游(AB方向),两人到达终点的位置相距14米.按各人的平均速度计算,谁先到达终点,为什么?

如图,在Rt△ABC中,AB=BC=4,D为BC的中点,在AC边上存在一点E,连接ED,EB,则△BDE周长的最小值为________.

已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是长方形,点A、C、D的坐标分别为A(9,0)、C(0,4),D(5,0),点P从点O出发,以每秒1个单位长度的速度沿O
C
B
A运动,点P的运动时间为t秒.
(1)当t=5时, P点坐标为____________;
(2)当t>4时,OP+PD有最小值吗?如果有,请算出该最小值,如果没有,请说明理由;
(3)当t为何值时,△ODP是腰长为5的等腰三角形?(直接写出t的值).





(1)当t=5时, P点坐标为____________;
(2)当t>4时,OP+PD有最小值吗?如果有,请算出该最小值,如果没有,请说明理由;
(3)当t为何值时,△ODP是腰长为5的等腰三角形?(直接写出t的值).


如图是一个三级台阶,它的每一级的长、宽和高分别等于5 cm,3 cm和1 cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去吃可口的食物.请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点,最短线路是多少?

如图,A、B两点在直线l的两侧,点A到直线l的距离AC=4,点B到直线l的距离BD=2,且CD=6,P为直线CD上的动点, 则
的最大值是( )



A.![]() | B.![]() | C.![]() | D.6 |