如图,Rt△OA1A2中,过A2作A2A3⊥OA2,以此类推.且OA1=A1A2=A2A3=A3A4…=1,记△OA1A2的面积为S1,△OA2A3面积为S2,△OA3A4面积为S3,…,细心观察图,认真分析各题,然后解答问题:
①(
)2+1=2,S1=
;
②(
)2+1=3,S2=
;
③(
)2+1=4,S3=
…
(1)请写出第n个等式;
(2)根据式子规律,线段OA10等于多少;
(3)求出S12+S22+S32+…+S102的值.
①(


②(


③(


…
(1)请写出第n个等式;
(2)根据式子规律,线段OA10等于多少;
(3)求出S12+S22+S32+…+S102的值.

如图,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.若AM=3,MN=5,则BN的长为______________.

在Rt△ABC中,∠C=90°,周长为24,斜边与一直角边之比为5:4,则这个直角三角形的面积是( )
A.20 | B.24 | C.28 | D.30 |
小明从一根长6m的钢条上截取一段后,截取的钢条恰好与两根长分别为3m、5m的钢条一起焊接成一个直角三角形钢架,则截取下来的钢条长应为( )
A.4m | B.![]() | C.4m或![]() | D.6m |
学完勾股定理之后,同学们想利用升旗的绳子、卷尺,测算出学校旗杆的高度.爱动脑筋的小明这样设计了一个方案:如图,小亮将升旗的绳子拉直到末端刚好接触地面,测得此时绳子末端距旗杆底端1米,然后将绳子末端拉直到距离旗杆5m处,测得此时绳子末端距离地面高度为1m,如果设旗杆的高度为x米(滑轮上方的部分忽略不计),求x的值.

如图,直角三角形三边上的等边三角形的面积从小到大依次记为S1、S2、S3,则S1、S2、S3之间的关系是( )


A.S1+S2>S3 | B.S1+S2<S3 | C.S1+S2=S3 | D.S12+S22>S32 |
如图,一次飓风灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是( )


A.5米 | B.6米 | C.7米 | D.8米 |