勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感.他惊喜地发现:当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明.下面是小聪利用图1证明勾股定理的过程:
将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:
.
证明:连结DB,过点D作BC边上的高DF,
则DF=EC=
,
∵
,
又∵
,
∴
,
∴
请参照上述证法,利用图2完成下面的证明:
将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.
求证:
.
证明:连结 ,
∵
,
又∵
,
∴ .
∴
.
将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:

证明:连结DB,过点D作BC边上的高DF,
则DF=EC=

∵

又∵

∴

∴

请参照上述证法,利用图2完成下面的证明:
将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.
求证:

证明:连结 ,
∵

又∵

∴ .
∴


如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.
(1)在图1中,画一个三角形,使它的三边长都是有理数;并写出你所画三角形的三边长 .
(2)在图2中,画一个等腰三角形,使它的一条边长为2
,另两边长为无理数;并写出你所画的三角形的三边长 .
写出每题的计算过程
(1)在图1中,画一个三角形,使它的三边长都是有理数;并写出你所画三角形的三边长 .
(2)在图2中,画一个等腰三角形,使它的一条边长为2

写出每题的计算过程

一圆柱形油罐如图所示,要从A点环绕油罐建梯子,正好到A点的正上方B点,已知油罐底面周长为12m,高AB为5m,问所建的梯子最短需多少m?

四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2
EF,则正方形ABCD的面积为( )



A.11S | B.12S | C.13S | D.14S |
如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF⊥AC于点F,连接EC,AF=3,△EFC的周长为12,则EC的长为 .

如图,厂房屋顶人字形钢架的跨度BC=12米,AB=AC=6.5米,则中柱AD(D为底边BC的中点)的长是( )


A.6米 | B.5米 | C.3米 | D.2.5米 |