- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 格点图中画等腰三角形
- 找出图中的等腰三角形
- 根据等角对等边证明等腰三角形
- 根据等角对等边证明边相等
- 根据等角对等边求边长
- 直线上与已知两点组成等腰三角形的点
- 求与图形中任意两点构成等腰三角形的点
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,每个小方格的边长为1,A,B两点都在小方格的顶点上,点C也是图中小方格的顶点,并且△ABC是等腰三角形,那么点C的个数为


A.1 | B.2 | C.3 | D.4 |
在如图所示的方格纸中,每个小方格都是边长为1的正方形,A、B是方格纸中的两个格点(即正方形的顶点).在这张5×5的方格纸中,找出格点C,使△ABC为等腰三角形,则满足条件的格点C有_____个.

三个顶点都在网格交点的三角形叫格点三角形
(1)在图1中画出一个面积为4的格点直角三角形;
(2)在图2中画出一个面积为4的格点等腰三角形.
(1)在图1中画出一个面积为4的格点直角三角形;
(2)在图2中画出一个面积为4的格点等腰三角形.

如图所示,正方形网格中,网格线的交点称为格点,已知点A,B是两个格点,如果点C也是图中的格点,且使得△ABC为等腰直角三角形,那么点C的个数为( )


A.4 | B.5 | C.6 | D.7 |
如图,已知每个小方格的边长为1,A、B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC是等腰三角形,这样的格点C有________个。

图l、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.点A和点B在小正方形的顶点上.
(1)在图1中画出△ABC(点C在小正方形的顶点上),使△ABC为直角三角形(画一个即可);
(2)在图2中画出△ABD(点D在小正方形的顶点上),使△ABD为等腰三角形(画一个即可);
(1)在图1中画出△ABC(点C在小正方形的顶点上),使△ABC为直角三角形(画一个即可);
(2)在图2中画出△ABD(点D在小正方形的顶点上),使△ABD为等腰三角形(画一个即可);

在直角坐标系中,O为坐标原点,已知点A(1,2),在坐标轴上确定点P
,使得△AOP为等腰三角形,则符合条件的点P的个数共有( )

A.5个 | B.6个 | C.7个 | D.8个 |
如图是由36个边长为1的小正方形拼成的网格图,请按照要求画图:
(1)在图①中画出2个以AB为腰且底边不等的等腰△ABC,要求顶点C是格点;
(2)在图②中画出1个以AB为底边的等腰△ABC,要求顶点C是格点.
(1)在图①中画出2个以AB为腰且底边不等的等腰△ABC,要求顶点C是格点;
(2)在图②中画出1个以AB为底边的等腰△ABC,要求顶点C是格点.
