- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 三角形内角和定理的证明
- 与平行线有关的三角形内角和问题
- 与角平分线有关的三角形内角和问题
- 三角形折叠中的角度问题
- + 三角形内角和定理的应用
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.

(1)求证:CF=DG;
(2)求出∠FHG的度数.

(1)求证:CF=DG;
(2)求出∠FHG的度数.
如图,已知直线
∥
,
、
和
、
分别交于点
、
、
、
,点
在直线
或
上且不与点
、
、
、
重合.记
,
,
.
(1)若点
在图(1)位置时,求证:
;
(2)若点
在图(2)位置时,请直接写出
、
、
之间的关系;
(3)若点
在图(3)位置时,写出
、
、
之间的关系并给予证明.




















(1)若点


(2)若点




(3)若点





已知直线
,现将一直角三角形
(
)放置其中,
交
于点
,
交
于点
.
(1)当
所放位置如图①所示,测得
,求证:
;
(2)当
所放位置如图②所示时,求出
与
的数量关系;
(3)在(2)的条件下,若
与
交于点
,且
,
,求
的度数.









(1)当



(2)当



(3)在(2)的条件下,若







如图,四边形ABCD中,∠F为四边形ABCD的∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的锐角,若设∠A=α,∠D=β;

(1)如图①,α+β>180°,试用α,β表示∠F;
(2)如图②,α+β<180°,请在图中画出∠F,并试用α,β表示∠F;
(3)一定存在∠F吗?如有,求出∠F的值,如不一定,指出α,β满足什么条件时,不存在∠F.

(1)如图①,α+β>180°,试用α,β表示∠F;
(2)如图②,α+β<180°,请在图中画出∠F,并试用α,β表示∠F;
(3)一定存在∠F吗?如有,求出∠F的值,如不一定,指出α,β满足什么条件时,不存在∠F.