- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 几何图形初步
- 相交线与平行线
- + 三角形
- 三角形基础
- 全等三角形
- 等腰三角形
- 勾股定理
- 四边形
- 圆
- 命题与证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
已知直线AB∥CD,将一块三角板EFG如图1所示,△EFG的边与直线AB、CD分别相交于M,N两点,∠F=90°,∠E=30°.
(1)求证:∠EMB+∠DNG=90°
(2)将另一块三角板MPQ如图2放置,△MPQ的边PQ、PM分别与直线CD相交于点R,与△EFG的EG相交于点O,∠P=90°,∠PMQ=45°,直接写出∠PMB与∠PRD的数量关系:


(1)求证:∠EMB+∠DNG=90°
(2)将另一块三角板MPQ如图2放置,△MPQ的边PQ、PM分别与直线CD相交于点R,与△EFG的EG相交于点O,∠P=90°,∠PMQ=45°,直接写出∠PMB与∠PRD的数量关系:
如图,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线交于点A1,∠A1BC的平分线与∠A1CD的平分线交于点A2,∠A2BC的平分线与∠A2CD的平分线交于点A3.设∠A=64°.则(1)∠A1=________;(2)∠A3=_______。

如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4.
(1)若∠1=35°,求∠DAC的度数;
(2)若∠BAC=69°,求∠DAC的度数.
(1)若∠1=35°,求∠DAC的度数;
(2)若∠BAC=69°,求∠DAC的度数.

下列说法:①内错角相等;②对顶角相等;③三角形的一个外角大于任何一个内角;④若三条线段
、
、
满足
,则三条线段
、
、
一定能组成三角形其中正确的个数是( )







A.1个 | B.2个 | C.3个 | D.4个. |