- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 几何图形初步
- 相交线与平行线
- + 三角形
- 三角形基础
- 全等三角形
- 等腰三角形
- 勾股定理
- 四边形
- 圆
- 命题与证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,△ABC中,∠A=90°,AB=AC,BD平分∠ABC交AC于D,DE⊥BC于点E,且BC=6,则△DEC的周长是( )


A.12 cm | B.10 cm | C.6cm | D.以上都不对 |
如图,在△ABC中,.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;……;∠A2013BC与∠A2013CD的平分线相交于点A2014,得∠A2014 .如果∠A=n度,则∠A2014=___________度.(直接用含n的代数式表示)

如图①,△ABC中,AD平分∠BAC交BC于点D,AE⊥BC,垂足为E, CF∥AD.

(1)如图①,∠B=30°,∠ACB=70°,则∠CFE=_________;
(2)若(1)中的∠B=
,∠ACB=
,则∠CFE=_________;(用
、
表示)
(3)如图②,(2)中的结论还成立么?请说明理由。

(1)如图①,∠B=30°,∠ACB=70°,则∠CFE=_________;
(2)若(1)中的∠B=




(3)如图②,(2)中的结论还成立么?请说明理由。
画图说明题,试用几何方法说明你所得结果的正确性.
(1)作∠AOB=90°;
(2)在∠AOB的内部任意画一条射线OP;
(3)画∠AOP的平分线OM以及∠BOP的平分线ON;
(4)用量角器量得∠MON= 度.
(1)作∠AOB=90°;
(2)在∠AOB的内部任意画一条射线OP;
(3)画∠AOP的平分线OM以及∠BOP的平分线ON;
(4)用量角器量得∠MON= 度.
(8分)如图,在△ABC中,∠B=90°,AB=BC=4,点E在BC上,将△ABC沿AE折叠,使点B落在AC边上的点F处.

(1)求BE的长;
(2)判断△CEF是什么特殊三角形.

(1)求BE的长;
(2)判断△CEF是什么特殊三角形.
(8分)已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.

(1)求证:AM平分∠BAD;
(2)试说明线段DM与AM有怎样的位置关系?
(3)线段CD、AB、AD间有怎样的关系?直接写出结果.

(1)求证:AM平分∠BAD;
(2)试说明线段DM与AM有怎样的位置关系?
(3)线段CD、AB、AD间有怎样的关系?直接写出结果.
如图,一个直角三角形纸片的顶点A在∠MON的边OM上移动,移动过程中始终保持AB⊥ON于点B,AC⊥OM于点A.∠MON的角平分线OP分别交AB、AC于D、E两点.

(1)点A在移动的过程中,线段AD和AE有怎样的数量关系,并说明理由.
(2)点A在移动的过程中,若射线ON上始终存在一点F与点A关于OP所在的直线对称,猜想线段DF和AE有怎样的关系,并说明理由.
(3)若∠MON=45°,猜想线段AC、AD、OC之间有怎样的数量关系,只写出结果即可.不用证明.

(1)点A在移动的过程中,线段AD和AE有怎样的数量关系,并说明理由.
(2)点A在移动的过程中,若射线ON上始终存在一点F与点A关于OP所在的直线对称,猜想线段DF和AE有怎样的关系,并说明理由.
(3)若∠MON=45°,猜想线段AC、AD、OC之间有怎样的数量关系,只写出结果即可.不用证明.