- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 平行线的性质
- 两直线平行同位角相等
- 两直线平行内错角相等
- 两直线平行同旁内角互补
- 平行线性质的应用
- 平行线的判定与性质
- 平行线之间的距离
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,等边三角形ABC中,E是线段AC上一点,F是BC延长线上一点.连接BE,AF.点G是线段BE的中点,BN∥AC,BN与AG延长线交于点N.

(1)若∠BAN=15°,求∠N;
(2)若AE=CF,求证:2AG=AF.

(1)若∠BAN=15°,求∠N;
(2)若AE=CF,求证:2AG=AF.
如图所示,D是AC上一点,BE∥AC,BE=AD,AE分别交BD,BC于点F,G.图中哪个三角形与△FAD全等?请你找出来并说明全等的理由.

如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:

①AD=BE;
②PQ∥AE;
③EQ=DP;
④∠AOB=60°;
⑤当C为AE中点时,S△BPQ:S△CDE=1:3.其中恒成立的结论有( )

①AD=BE;
②PQ∥AE;
③EQ=DP;
④∠AOB=60°;
⑤当C为AE中点时,S△BPQ:S△CDE=1:3.其中恒成立的结论有( )
A.①②④ | B.①②③④ | C.①②③⑤ | D.①②④⑤ |
在平面直角坐标系中,已知A(a,0),B(0,b)且a,b满足
,
点P在线段AB上(含端点)的一点,连接OP。
(1)若AB=
,且△OBP是以OB为腰长的等腰三角形,求BP的长;
(2)如图1,过点A作AQ⊥x轴(Q在x轴上方),且满足∠OPQ=90°,求证:OP=PQ;
(3)如图2,C,D分别为OA,OB上的两点,且OC=OD,点P满足OP⊥AD,过点P作
PE⊥BC交AD的延长线于点E,试探究AE,OP,PE之间的数量关系,并给出证明。


点P在线段AB上(含端点)的一点,连接OP。
(1)若AB=

(2)如图1,过点A作AQ⊥x轴(Q在x轴上方),且满足∠OPQ=90°,求证:OP=PQ;
(3)如图2,C,D分别为OA,OB上的两点,且OC=OD,点P满足OP⊥AD,过点P作
PE⊥BC交AD的延长线于点E,试探究AE,OP,PE之间的数量关系,并给出证明。

