- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 几何图形初步
- + 相交线与平行线
- 相交线及其所成的角
- 平行线及其判定
- 平行线的性质
- 三角形
- 四边形
- 圆
- 命题与证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图∠1=∠2,CF⊥AB,DE⊥AB,求证:FG∥B
A.![]() 证明:∵CF⊥AB,DE⊥AB (已知) ∴∠BED=90°,∠BFC=90°( ) ∴∠BED=∠BFC ( ) ∴ED∥FC ( ) ∴∠1=∠BCF ( ) ∵∠2=∠1 ( 已知 ) ∴∠2=∠BCF ( ) ∴FG∥BC ( ) |
填空,如图所示.

(1)∵
(已知),∴_________
_________ (______).
(2)∵
(已知),∴_________
_________(______).
(3)∵
_________
(已知),∴
(______).

(1)∵


(2)∵


(3)∵



如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上,直尺的一边恰好平分60°角,那么∠1的度数是( )


A.105° | B.130° | C.120° | D.150° |
如图,直线AB,CD相交于点O,∠AOC =75°,OE把∠BOD分成两部分,且∠BOE:∠EOD=1:2,则∠AOE等于( )


A.165° | B.155° | C.150° | D.130° |