如图,在正方形 ABCD 中,AB=9,点 E 在 CD 边上,且 DE=2CE,点 P 是对角线 AC 上的一个动点,则 PE+PD 的最小值是()


A.![]() | B.![]() | C.9 | D.![]() |
如图,长方形ABCD中,AB=4cm,BC=6cm,现有一动点P从A出发以2cm/秒的速度,沿矩形的边A—B—C—D回到点A,设点P的运动时间为t秒,
(1)当t=3秒时,求BP的长;
(2)当t为何值时,连接BP,AP,△ABP的面积为长方形的面积三分之一?
(3)Q为AD边上的点,且DQ=5,当t为何值时,以长方形的两个顶点及点P为顶点的三角形与△DCQ全等?

(1)当t=3秒时,求BP的长;
(2)当t为何值时,连接BP,AP,△ABP的面积为长方形的面积三分之一?
(3)Q为AD边上的点,且DQ=5,当t为何值时,以长方形的两个顶点及点P为顶点的三角形与△DCQ全等?


下面是小东设计的“作矩形”的尺规作图过程,已知:
求作:矩形
作法:如图,
①作线段
的垂直平分线角交
于点
;
②连接
并延长,在延长线上截取
③连接
所以四边形
即为所求作的矩形

根据小东设计的尺规作图过程
(1)使用直尺和圆规,补全图形:(保留作图痕迹)
(2)完成下边的证明:
证明:
,
,
四边形是平行四边形( )(填推理的依据)

四边形
是矩形( )(填推理的依据)

求作:矩形

作法:如图,
①作线段



②连接


③连接

所以四边形


根据小东设计的尺规作图过程
(1)使用直尺和圆规,补全图形:(保留作图痕迹)
(2)完成下边的证明:
证明:






四边形ABCD是一个长方形,将AD沿某一直线AF(F为折痕与CD边的交点)折叠,使点D落在BC边上的某一点E处,请用没有刻度的直尺与圆规找出点E与折痕AF,并在折痕AF上找一点P满足BP+EP最小.

在数学课上,老师提出如下问题:
尺规作图:过直线外一点作已知直线的平行线.
已知:直线l及其外一点A.
求作:l的平行线,使它经过点A.

小云的作法如下:
(1)在直线l上任取一点B;
(2)以B为圆心,BA长为半径作弧,交直线l于点C;
(3)分别以A、C为圆心,BA长为半径作弧,两弧相交于点D;
(4)作直线A

小云作图的依据是_______________________________.
尺规作图:过直线外一点作已知直线的平行线.
已知:直线l及其外一点A.
求作:l的平行线,使它经过点A.

小云的作法如下:
(1)在直线l上任取一点B;
(2)以B为圆心,BA长为半径作弧,交直线l于点C;
(3)分别以A、C为圆心,BA长为半径作弧,两弧相交于点D;
(4)作直线A
A.直线AD即为所求. |

小云作图的依据是_______________________________.
阅读下面材料:
在数学课上,老师提出如下问题:
已知:如图,四边形
是平行四边形.求作:菱形
,使点
分别在
上.
小凯的作法如下:
(1)连接
;
(2)作
的垂直平分线
分别交
于
;
(3)连接
.
所以四边形
是菱形.
老师说:“小凯的作法正确.”
请回答:在小凯的作法中,判定四边形
是菱形的依据是__________.
在数学课上,老师提出如下问题:
已知:如图,四边形




小凯的作法如下:
(1)连接

(2)作




(3)连接

所以四边形

老师说:“小凯的作法正确.”
请回答:在小凯的作法中,判定四边形


下面是小宇设计的“作已知直角三角形的中位线”的尺规作图过程.
已知:在△ABC中,∠C=90°.
求作:△ABC的中位线DE,使点D在AB上,点E在AC上.
作法:如图,
①分别以A,C为圆心,大于
AC长为半径画弧,两弧交于P,Q两点;
②作直线PQ,与AB交于点D,与AC交于点E.
所以线段DE就是所求作的中位线.
根据小宇设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:连接PA,PC,QA,QC,DC,
∵PA=PC,QA= ,
∴PQ是AC的垂直平分线( )(填推理的依据).
∴E为AC中点,AD=DC.
∴∠DAC=∠DCA,
又在Rt△ABC中,有∠BAC+∠ABC=90°,∠DCA+∠DCB=90°.
∴∠ABC=∠DCB( )(填推理的依据).
∴DB=DC.
∴AD=BD=DC.
∴D为AB中点.
∴DE是△ABC的中位线.
已知:在△ABC中,∠C=90°.
求作:△ABC的中位线DE,使点D在AB上,点E在AC上.
作法:如图,
①分别以A,C为圆心,大于

②作直线PQ,与AB交于点D,与AC交于点E.
所以线段DE就是所求作的中位线.
根据小宇设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:连接PA,PC,QA,QC,DC,
∵PA=PC,QA= ,
∴PQ是AC的垂直平分线( )(填推理的依据).
∴E为AC中点,AD=DC.
∴∠DAC=∠DCA,
又在Rt△ABC中,有∠BAC+∠ABC=90°,∠DCA+∠DCB=90°.
∴∠ABC=∠DCB( )(填推理的依据).
∴DB=DC.
∴AD=BD=DC.
∴D为AB中点.
∴DE是△ABC的中位线.

如图,在△ABC中,BD平分∠ABC,

(1)按如下步骤作图:(保留作图痕迹)
第一步,分别以点B、D为圆心,以大于
BD的长为半径在BD两侧作弧,交于两点M、N;
第二步,连接MN分别交AB,BC于点E、F;
第三步,连接DE,DF.
(2)求证:四边形BEDF是菱形;
(3)若AD=6,BF=4,CD=3,求AE的长.

(1)按如下步骤作图:(保留作图痕迹)
第一步,分别以点B、D为圆心,以大于

第二步,连接MN分别交AB,BC于点E、F;
第三步,连接DE,DF.
(2)求证:四边形BEDF是菱形;
(3)若AD=6,BF=4,CD=3,求AE的长.
如图,在平面直角坐标系中,点A的坐标为(0,4),点B的坐标为(4,4),点C的坐标为(4,0),点D是x轴上(在点O右侧)任意一点,以AD为边向右侧作正方形ADEF,连接BF,设点D的坐标为(t,0)处.

(1)求证:△AOD≌△ABF;
(2)求点E的坐标(用含有t的代数式来表示);
(3)当△DBE是等腰三角形时,请直接写出t的值.

(1)求证:△AOD≌△ABF;
(2)求点E的坐标(用含有t的代数式来表示);
(3)当△DBE是等腰三角形时,请直接写出t的值.
将一张长方形纸条(如图①)对折后展开,按照图②、图③所示依次折叠,已知图③中AB=2BC,若这张长方形纸条的长是28cm,则纸条的宽是_____cm.
