为迎接“五一”节的到来,某食品连锁店对某种商品进行了跟踪调查,发现每天它的销售价与销售量之间有如下关系:
如果单价从最高25元/千克下调到x元/千克时,销售量为y千克,已知y与x之间的函数关系是一次函数:
(1)求y与x之间的函数解析式;(不写定义域)
(2)若该种商品成本价是15元/千克,为使“五一”节这天该商品的销售总利润是200元,那么这一天每千克的销售价应定为多少元?
每千克售价(元) | 25 | 24 | 23 | … | 15 |
每天销售量(千克) | 30 | 32 | 34 | … | 50 |
(1)求y与x之间的函数解析式;(不写定义域)
(2)若该种商品成本价是15元/千克,为使“五一”节这天该商品的销售总利润是200元,那么这一天每千克的销售价应定为多少元?
某市自来水公司为鼓励居民节约用水,采取按月用水量分段收费的办法,若某户居民应交水费y(元)与用水量x(吨)的函数关系如图所示.
(1)分别写出当0≤x≤15和x≥15时,y与x的函数关系式;
(2)若某用户该月应交水费42元,则该月用水多少吨?

(1)分别写出当0≤x≤15和x≥15时,y与x的函数关系式;
(2)若某用户该月应交水费42元,则该月用水多少吨?

在平面直角坐标系xOy中,有三条平行的直线l1,l2,l3,函数解析式依次为y=x,y=x+1,y=x+3,在这三条直线上各有一个动点,依次为A,B,C,它们的横坐标分别表示为a,b,c.则当a,b,c满足条件 ______ 时,这三点不能构成三角形.
如图,反映的过程是:晓明从家跑步到体育馆,在那里锻炼了一阵后又走到新华书店去买书,然后散步走回家.其中
表示时间(分钟),
表示晓明离家的距离(千米),那么晓明在体育馆锻炼和在新华书店买书共用去时间是_______________分钟.




如图是某汽车行驶的路程s(km)与时间t(分钟) 的函数关系图.观察图中所提供的信息,解答下列问题:
(1)求汽车在前9分钟内的平均速度.
(2)汽车在中途停留的时间.
(3)求该汽车行驶30千米的时间.
(1)求汽车在前9分钟内的平均速度.
(2)汽车在中途停留的时间.
(3)求该汽车行驶30千米的时间.

某人在银行的信用卡存入2万元,每次取出50元,若卡内余额为 y(元),取钱的次数为x.(利息忽略不计)
(1)、写出y与x之间的函数关系式,并求出自变量的取值范围?
(2)、取多少次钱以后,余额为原存款的四分之一?
(1)、写出y与x之间的函数关系式,并求出自变量的取值范围?
(2)、取多少次钱以后,余额为原存款的四分之一?
某城市自来水收费实行阶梯水价,收费标准如下表所示,用户5月份交水费45元,则所用水为__ 方.
月用水量 | 不超过12方部分 | 超过12方不超过18吨部分 | 超过18方部分 |
收费标准(元/方) | 2 | 2.5 | 3 |
某商场销售一种西装和领带,西装每套定价1 000元,领带每条定价200元.国庆节期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.
方案一:买一套西装送一条领带;
方案二:西装和领带都按定价的90%付款.
现某客户要到该商场购买西装20套,领带x条(x>20).
(1)若该客户按方案一购买,需付款______元;该客户按方案二购买,需付款____元;(用含x的代数式表示)
(2)若x=30,通过计算说明此时按哪种方案购买较为合算;
(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.
方案一:买一套西装送一条领带;
方案二:西装和领带都按定价的90%付款.
现某客户要到该商场购买西装20套,领带x条(x>20).
(1)若该客户按方案一购买,需付款______元;该客户按方案二购买,需付款____元;(用含x的代数式表示)
(2)若x=30,通过计算说明此时按哪种方案购买较为合算;
(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.
将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水(如图所示),则小水杯内水面的高度
与注水时间
的函数图象大致为( )




A.![]() | B.![]() | C.![]() | D.![]() |