如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A、C分别在坐标轴上,顶点B的坐标为(6,4),E为AB的中点,过点D(8,0)和点E的直线分别与BC、y轴交于点F、G.

(1)求直线DE的函数关系式;
(2)函数y=mx﹣2的图象经过点F且与x轴交于点H,求出点F的坐标和m值;
(3)在(2)的条件下,求出四边形OHFG的面积.

(1)求直线DE的函数关系式;
(2)函数y=mx﹣2的图象经过点F且与x轴交于点H,求出点F的坐标和m值;
(3)在(2)的条件下,求出四边形OHFG的面积.
如图①,在矩形 ABCD中,AB=30cm,BC=60cm.点P从点A出发,沿A→B→C→D路线向点D匀速运动,到达点D后停止;点Q从点D出发,沿 D→C→B→A路线向点A匀速运动,到达点A后停止.若点P、Q同时出发,在运动过程中,Q点停留了1s,图②是P、Q两点在折线AB-BC-CD上相距的路程S(cm)与时间t(s)之间的函数关系图象.

(1)请解释图中点H的实际意义?
(2)求P、Q两点的运动速度;
(3)将图②补充完整;
(4)当时间t为何值时,△PCQ为等腰三角形?请直接写出t的值.

(1)请解释图中点H的实际意义?
(2)求P、Q两点的运动速度;
(3)将图②补充完整;
(4)当时间t为何值时,△PCQ为等腰三角形?请直接写出t的值.
如图,n+1个边长为2的等边三角形有一条边在同一直线上,设△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,△Bn+1DnCn的面积为Sn,则S2= ;Sn= .(用含n的式子表示)


如图1,在平面直角坐标系中,将▱ABCD放置在第一象限,且AB∥x轴.直线y=-x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2所示,那么AD的长为 .


如图,一次函数
的函数图象与x轴、y轴分别交于点A、B,以线段AB为直角边在第一象限内作Rt△ABC,且使∠ABC=30°;

(1)如果点P(m,
)在第二象限内,试用含m的代数式表示四边形AOPB的面积,并求当△APB与△ABC面积相等时m的值;
(2)如果△QAB是等腰三角形并且点Q在坐标轴上,请求出点Q所有可能的坐标;
(3)是否存在实数a,b使一次函数
和y=ax+b的图象关于直线y=x对称?若存在,求出
的值;若不存在,请说明理由.


(1)如果点P(m,

(2)如果△QAB是等腰三角形并且点Q在坐标轴上,请求出点Q所有可能的坐标;
(3)是否存在实数a,b使一次函数


晚饭后,郑大爷出去散步,如图描述了他散步过程中离家的距离s(米)与散步所用时间t(分)之间的关系,依据图象,下面的描述符合郑大爷散步情景的是( )


A.从家出发,到了一个公共阅报栏,看了一会儿报,就回家了 |
B.从家出发,到了一个公共阅报栏,看了一会儿报,继续向前一段,然后回家了 |
C.从家出发,一直散步(没有停留),然后回家了 |
D.从家出发,散了一会儿步,就找朋友去了,13分后才开始返回 |
已知y是关于x的函数,且x,y满足方程组
.
(1)求函数y的表达式;
(2)若点P的坐标为(m,0),求以P为圆心、1为半径的圆与函数y的图象有交点时,m的取值范围.

(1)求函数y的表达式;
(2)若点P的坐标为(m,0),求以P为圆心、1为半径的圆与函数y的图象有交点时,m的取值范围.