- 数与式
- 方程与不等式
- 从算式到方程
- 解一元一次方程
- + 实际问题与一元一次方程
- 一元一次方程的应用——配套问题
- 一元一次方程的应用——工程问题
- 一元一次方程的应用——销售盈亏
- 一元一次方程的应用——比赛积分
- 一元一次方程的应用——方案选择
- 一元一次方程的应用——数字问题
- 一元一次方程的应用——几何问题
- 一元一次方程的应用——和差倍分问题
- 一元一次方程的应用——电费和水费问题
- 一元一次方程的应用——行程问题
- 一元一次方程的应用——比例分配
- 一元一次方程的应用——日历问题
- 一元一次方程的应用——其他问题
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
在2020年元旦即将到来之际建湖县大润发和家乐福两超市准备提前庆祝该节日,分别推出如下促销方式:
大润发:全场均按八五折优惠;
家乐福:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打八八折;超过500元时,其中的500元优惠12%,超过500元的部分打八折;
已知两家超市相同商品的标价都一样.
(1)当一次性购物总额是400元时,大润发、家乐福两家超市实付款分别是多少?
(2)当购物总额是多少时,大润发、家乐福两家超市实付款相同?
(3)某顾客在家乐福超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由.
大润发:全场均按八五折优惠;
家乐福:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打八八折;超过500元时,其中的500元优惠12%,超过500元的部分打八折;
已知两家超市相同商品的标价都一样.
(1)当一次性购物总额是400元时,大润发、家乐福两家超市实付款分别是多少?
(2)当购物总额是多少时,大润发、家乐福两家超市实付款相同?
(3)某顾客在家乐福超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由.
某船从A码头顺流而下到达B码头,然后逆流返回,到达A. B两码头之间的C码头,一共航行了7小时,已知此船在静水中的速度为7.5千米时,水流速度为2.5千米/时,A. C两码头之间的航程为10千米,求A. B两码头之间的航程.
甲、乙二人在圆形跑道上从同一点A同时出发,并按相反方向跑步,甲的速度为每秒5m,乙的速度为每秒8m,到他们第一次在A点处再度相遇时跑步就结束.则从他们开始出发(算第一次相遇)到结束(算最后一次相遇)共相遇了__________ 次.
某下水管道工程由甲、乙两个工程队单独铺设分别需要10天、15天完成。如果两队从两端同时施工2天,然后由乙队单独施工,还需多少天完成?
张师傅在铺瓷砖时发现,用8块大小一样的小长方形瓷砖恰好可以拼成一个大的长方形,如图①.然后,他用这8块瓷砖又拼出一个正方形,如图②,中间恰好空出一个边长为1的小正方形(阴影部分).

(1)请你根据图①写出小长方形的长与宽之比为 ;
(2)请你根据图②列出方程,求出小长方形的长与宽.

(1)请你根据图①写出小长方形的长与宽之比为 ;
(2)请你根据图②列出方程,求出小长方形的长与宽.
“十一”黄金周期间, 西安旅行社推出了“西安红色游”项目团购活动,收费标准如下:若总人数不超过25人,每人收费1000元;若总人数超过25人,每增加1人,每人收费降低20元(每人收费不低于700元),设有x人参加这一旅游项目的团购活动.
(1)当x=35时,每人的费用为______元.
(2)某社区居民组团参加该活动,共支付旅游费用27000元,求该社区参加此次“西安红色游”的人数.
(1)当x=35时,每人的费用为______元.
(2)某社区居民组团参加该活动,共支付旅游费用27000元,求该社区参加此次“西安红色游”的人数.
将数轴按如图所示从点A开始折出一等边△ABC,设A表示的数为x-3, B表示的数为 2x-5,
C表示的数为5-x,则x="______" ;若将△ABC向右滚动,则点2011与点_____重合.(填A.B.C)

C表示的数为5-x,则x="______" ;若将△ABC向右滚动,则点2011与点_____重合.(填A.B.C)
