观察下列各式及其展开式
(a+b)2=a2+2ab+b2
(a+b)3=a3+3a2b+3ab2+b3
(a+b)4=a4+4a3b+6a2b2+4ab3+b4
…
根据下图,猜想:

(a+b)5=_____.
(a+b)2=a2+2ab+b2
(a+b)3=a3+3a2b+3ab2+b3
(a+b)4=a4+4a3b+6a2b2+4ab3+b4
…
根据下图,猜想:

(a+b)5=_____.
阅读理解:
已知a+b=﹣4,ab=3,求a2+b2的值.
解:∵a+b=﹣4,
∴(a+b)2=(﹣4)2.
即a2+2ab+b2=16.
∵ab=3,
∴a2+b2=10.
参考上述过程解答:
(1)已知a﹣b=﹣3,ab=﹣2.求式子(a﹣b)(a2+b2)的值;
(2)若m﹣n﹣p=﹣10,(m﹣p)n=﹣12,求式子(m﹣p)2+n2的值.
已知a+b=﹣4,ab=3,求a2+b2的值.
解:∵a+b=﹣4,
∴(a+b)2=(﹣4)2.
即a2+2ab+b2=16.
∵ab=3,
∴a2+b2=10.
参考上述过程解答:
(1)已知a﹣b=﹣3,ab=﹣2.求式子(a﹣b)(a2+b2)的值;
(2)若m﹣n﹣p=﹣10,(m﹣p)n=﹣12,求式子(m﹣p)2+n2的值.