(1)图(1)是一个长为2m,宽为2n的矩形,把此矩形沿图中虚线用剪刀均分为四个小长方形,然后按图(2)的形状拼成一个大正方形.请问:这两个图形的什么量不变?
(2)把所得的大正方形面积比原矩形的面积多出的阴影部分的面积用含m,n的代数式表示为(m-n)2或m2-2mn+n2 .
(3)由前面的探索可得出的结论是:在周长一定的矩形中,当 时,面积最大.
(4)若矩形的周长为24cm,则当边长为多少时,该图形的面积最大?最大面积是多少?

(2)把所得的大正方形面积比原矩形的面积多出的阴影部分的面积用含m,n的代数式表示为(m-n)2或m2-2mn+n2 .
(3)由前面的探索可得出的结论是:在周长一定的矩形中,当 时,面积最大.
(4)若矩形的周长为24cm,则当边长为多少时,该图形的面积最大?最大面积是多少?
如图(1),有A、B、C三种不同型号的卡片若干张,其中A型是边长为a(a>b)的正方形,B型是长为a、宽为b的长方形,C型是边长为b的正方形.

(1)若用A型卡片1张,B型卡片2张,C型卡片1张拼成了一个正方形(如图(2)),此正方形的边长为 ,根据该图形请写出一条属于因式分解的等式: .
(2)若要拼一个长为2a+b,宽为a+2b的长方形,设需要A类卡片x张,B类卡片y张,C类卡片z张,则x+y+z= .
(3)现有A型卡片1张,B型卡片6张,C型卡片11张,从这18张卡片中拿掉两张卡片,余下的卡片全用上,你能拼出一个长方形或正方形吗?有几种拼法?请你通过运算说明理由.

(1)若用A型卡片1张,B型卡片2张,C型卡片1张拼成了一个正方形(如图(2)),此正方形的边长为 ,根据该图形请写出一条属于因式分解的等式: .
(2)若要拼一个长为2a+b,宽为a+2b的长方形,设需要A类卡片x张,B类卡片y张,C类卡片z张,则x+y+z= .
(3)现有A型卡片1张,B型卡片6张,C型卡片11张,从这18张卡片中拿掉两张卡片,余下的卡片全用上,你能拼出一个长方形或正方形吗?有几种拼法?请你通过运算说明理由.