利用我们学过的知识,可以得出下面这个优美的等式:
;该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.
⑴.请你证明这个等式;
⑵.如果
,请你求出
的值.

⑴.请你证明这个等式;
⑵.如果


下列各式中能用平方差公式的是( )
A.(x+y)(y+x) | B.(x+y)(y-x) | C.(x+y)(-y-x) | D.(-x+y)(y-x) |
阅读下面的材料并解答后面的问题:
(阅读)
小亮:你能求出x2+4x﹣3的最小值吗?如果能,其最小值是多少?
小华:能.求解过程如下:
因为x2+4x﹣3=x2+4x+4﹣4﹣3=(x2+4x+4)﹣(4+3)=(x+2)2﹣7.
而(x+22)≥0,所以x2+4x﹣3的最小值是﹣7.
(1)小华的求解过程正确吗?
(2)你能否求出x2﹣5x+4的最小值?如果能,写出你的求解过程.
(阅读)
小亮:你能求出x2+4x﹣3的最小值吗?如果能,其最小值是多少?
小华:能.求解过程如下:
因为x2+4x﹣3=x2+4x+4﹣4﹣3=(x2+4x+4)﹣(4+3)=(x+2)2﹣7.
而(x+22)≥0,所以x2+4x﹣3的最小值是﹣7.
(1)小华的求解过程正确吗?
(2)你能否求出x2﹣5x+4的最小值?如果能,写出你的求解过程.