- 数与式
- 同底数幂的乘法
- 幂的乘方
- 积的乘方
- 同底数幂的除法
- 幂的混合运算
- 单项式乘多项式
- + 多项式乘多项式
- 计算多项式乘多项式
- (x+p)(x+q)型多项式乘法
- 已知多项式乘积不含某项求字母的值
- 多项式乘多项式——化简求值
- 多项式乘多项式与图形面积
- 多项式乘法中的规律性问题
- 整式乘法混合运算
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
我们知道某些特殊形式的多项式相乘,可以写成公式的形式,当遇到相同形式的多项式相乘时,就可以直接运用公式写出结果,下面我们就来探究一个公式并应用这个公式解决问题.
(1)计算:(x+1)(x2﹣x+1)= ;
(m+2)(m2﹣2m+4)= ;
(2a+1)(4a2﹣2a+1)= .
(2)上面的乘法运算结果很简洁,观察上面运算你发现了什么规律?用字母a,b表示这个规律,并加以证明.
(3)已知x+y=2,xy=﹣3,求x3+y3.
(1)计算:(x+1)(x2﹣x+1)= ;
(m+2)(m2﹣2m+4)= ;
(2a+1)(4a2﹣2a+1)= .
(2)上面的乘法运算结果很简洁,观察上面运算你发现了什么规律?用字母a,b表示这个规律,并加以证明.
(3)已知x+y=2,xy=﹣3,求x3+y3.
我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图所示的三角形解释二项式乘方(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)64的展开式中第63项的系数为_____.

在我们所学的课本中,多项式与多项式相乘可以用几何图形的面积来表示.例如,(2a+b)(a+b)=2a2+3ab+b2就可以用图(1)来表示.请你根据此方法写出图(2)中图形的面积所表示的代数恒等式:____________ .
