下列定义一种关于n的运算:①当n是奇数时,结果为3n+5②当n为偶数时,结果是
(其中k是使
是奇数的正整数),运算重复进行,如:取n=26,则26
13
44
11……若n=449,则第449次运算的结果是( )





A.1 | B.2 | C.7 | D.8 |
观察下面的点阵图和相应的等式,探究其中的规律:

(1)在④和⑤后面的横线上分别写出相应的等式;
(2)试用含有n的式子表示第n个等式: ;(n为正整数)
(3)请用上述规律计算:
①1+3+5+…+49;
②101+103+105+…+197+199.

(1)在④和⑤后面的横线上分别写出相应的等式;
(2)试用含有n的式子表示第n个等式: ;(n为正整数)
(3)请用上述规律计算:
①1+3+5+…+49;
②101+103+105+…+197+199.
已知M=4x3+3x2﹣5x+8a+1,N=2x2+ax﹣6,若多项式M+N不含一次项,则多项式M+N的常数项是( )
A.35 | B.40 | C.45 | D.50 |
在《代数式》的学习中,我们通过对同一面积的不同表达和比较,得到合并同类项的法则。下面我们利用这种方法来研究速算。
(1)提出问题:47×43,56×54,89×81,……是一些十位数相同,且个位数之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?
(2)几何建模:
用长方形的面积表示两个正数的乘积,以47×43为例:
(1)画长为47,宽为43的矩形,如图,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原长方形上面.

(2)分析:原长方形面积可以有两种不同的表达方式:47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的长方形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,
(3)模仿应用:
①请仿照上面的方法使用长方形的面积表示56×54的乘积;
②填空:89×81= ×8×100+ × =7209;
(4)归纳提炼:
两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述) .
(1)提出问题:47×43,56×54,89×81,……是一些十位数相同,且个位数之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?
(2)几何建模:
用长方形的面积表示两个正数的乘积,以47×43为例:
(1)画长为47,宽为43的矩形,如图,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原长方形上面.

(2)分析:原长方形面积可以有两种不同的表达方式:47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的长方形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,
(3)模仿应用:
①请仿照上面的方法使用长方形的面积表示56×54的乘积;
②填空:89×81= ×8×100+ × =7209;
(4)归纳提炼:
两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述) .
下列说法错误的是( )
A.﹣![]() ![]() | B.多项式![]() |
C.﹣![]() | D.数轴上,右边的数总比左边的数大 |