题库 初中数学

题干

在《代数式》的学习中,我们通过对同一面积的不同表达和比较,得到合并同类项的法则。下面我们利用这种方法来研究速算。
(1)提出问题:47×43,56×54,89×81,……是一些十位数相同,且个位数之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?
(2)几何建模:
用长方形的面积表示两个正数的乘积,以47×43为例:
(1)画长为47,宽为43的矩形,如图,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原长方形上面.

(2)分析:原长方形面积可以有两种不同的表达方式:47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的长方形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,
(3)模仿应用:
①请仿照上面的方法使用长方形的面积表示56×54的乘积;
②填空:89×81= ×8×100+ × =7209;
(4)归纳提炼:
两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述) .
上一题 下一题 0.99难度 解答题 更新时间:2019-11-27 10:11:55

答案(点此获取答案解析)

同类题1

问题提出
一个边长为 ncm(n⩾3)的正方体木块,在它的表面涂上颜色,然后切成边长为1cm的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?

问题探究
我们先从特殊的情况入手
(1)当n=3时,如图(1)
没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有1×1×1=1个小正方体;
一面涂色的:在面上,每个面上有1个,共有6个;
两面涂色的:在棱上,每个棱上有1个,共有12个;
三面涂色的:在顶点处,每个顶点处有1个,共有8个.
(2)当n=4时,如图(2)
没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体:
一面涂色的:在面上,每个面上有4个,正方体共有  个面,因此一面涂色的共有 个;
两面涂色的:在棱上,每个棱上有2个,正方体共有  条棱,因此两面涂色的共有 个;
三面涂色的:在顶点处,每个顶点处有1个,正方体共有 个顶点,因此三面涂色的共有 个…
问题解决
一个边长为ncm(n⩾3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有______个小正方体;一面涂色的:在面上,共有______个;两面涂色的:在棱上,共有______个;三面涂色的:在顶点处,共______个。
问题应用
一个大的正方体,在它的表面涂上颜色,然后把它切成棱长1cm的小正方体,发现有两面涂色的小正方体有96个,请你求出这个大正方体的体积.
相关知识点