- 数与式
- 数轴的三要素及其画法
- 用数轴上的点表示有理数
- 利用数轴比较有理数的大小
- + 数轴上两点之间的距离
- 数轴上的动点问题
- 根据点在数轴的位置判断式子的正负
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
因为到点2和点6距离相等的点表示的数是4,有这样的关系
,那么到点100和到点999距离相等的数是_____________;到点
距离相等的点表示的数是____________;到点m和点–n距离相等的点表示的数是________.


阅读材料:我们知道:如果点A. B在数轴上分别表示有理数a、b,那么A. B两点之间的距离表示为AB,在数轴上A. B两点之间的距离AB=|a−b|.
根据上述材料,利用数轴解答下列问题:

(1)如果点A在数轴上表示−2,将点A先向左平移2个单位长度,再向右移动7个单位长度,那么终点B在数轴上表示的数是___;
(2)数轴上表示x和1的两个点之间的距离是___;
(3)若|x−3|+|x+2|=7,则x的值是___;
(4)在(1)的条件下,设点P在数轴上表示的数为x,当|PA|−|PB|=2时,则x的值是___.
根据上述材料,利用数轴解答下列问题:

(1)如果点A在数轴上表示−2,将点A先向左平移2个单位长度,再向右移动7个单位长度,那么终点B在数轴上表示的数是___;
(2)数轴上表示x和1的两个点之间的距离是___;
(3)若|x−3|+|x+2|=7,则x的值是___;
(4)在(1)的条件下,设点P在数轴上表示的数为x,当|PA|−|PB|=2时,则x的值是___.
已知a,b,c所表示的数在数轴上的位置如图所示:

(1)化简:│a-1│-│c+b│+│b-1│;
(2)若a+b+c=0,且b与-1的距离和c与-1的距离相等,求:-a2+2b-c-(a-4c-b)的值.

(1)化简:│a-1│-│c+b│+│b-1│;
(2)若a+b+c=0,且b与-1的距离和c与-1的距离相等,求:-a2+2b-c-(a-4c-b)的值.
我们知道,在数轴上,点M,N分别表示数m,n则点M,N之间的距离为|m﹣n|.已知点A,B,C,D在数轴上分别表示数a,b,c,d,且|a﹣c|=|b﹣c|=
|d﹣a|=1(a≠b),则线段BD的长度为_____.

如图,半径为 1 的小圆与半径为 2 的大圆,有一个公共点与数轴上的原点重合,两圆在数轴上做无滑动的滚动,小圆的运动速度为每秒π个单位,大圆的运动速度为每秒 2π个单位,
(1)若小圆不动,大圆沿数轴来回滚动,规定大圆向右滚动的时间记为正数,向左滚动时间即为负数,依次滚动的情况录如下(单位:秒):
﹣1,+2,﹣4,﹣2,+3,+6

①第 次滚动后,大圆与数轴的公共点到原点的距离最远;
②当大圆结束运动时,大圆运动的路程共有多少?此时两圆与数轴重合的点之间的距离是多少?(结果保留π)
(2)若两圆同时在数轴上各自沿着某一方向连续滚动,滚动一段时间后两圆与数轴重合的点之间相距 9π,求此时两圆与数轴重合的点所表示的数.
(1)若小圆不动,大圆沿数轴来回滚动,规定大圆向右滚动的时间记为正数,向左滚动时间即为负数,依次滚动的情况录如下(单位:秒):
﹣1,+2,﹣4,﹣2,+3,+6

①第 次滚动后,大圆与数轴的公共点到原点的距离最远;
②当大圆结束运动时,大圆运动的路程共有多少?此时两圆与数轴重合的点之间的距离是多少?(结果保留π)
(2)若两圆同时在数轴上各自沿着某一方向连续滚动,滚动一段时间后两圆与数轴重合的点之间相距 9π,求此时两圆与数轴重合的点所表示的数.
如图,在数轴上A点表示数-3,B点表示数b,C点表示数c,且b.c满足

(1)b= ,c= .
(2)若使
(3)点A.B.C开始在数轴上运动,若点A以每秒m个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动时间为t秒;
①点A.B.C表示的数分别是 . . (用含m.t的代数式表示);
②若点B与点C之间的距离表示为d1,点A与点B之间的距离表示为d2,当m为何值时,2d1-d2的值不会随着时间t的变化而改变,并求出此时2d1-d2的值.


(1)b= ,c= .
(2)若使
A.B两点的距离是A.B两点的距离的2倍,则需将点C向左移动 个单位长度. |
①点A.B.C表示的数分别是 . . (用含m.t的代数式表示);
②若点B与点C之间的距离表示为d1,点A与点B之间的距离表示为d2,当m为何值时,2d1-d2的值不会随着时间t的变化而改变,并求出此时2d1-d2的值.