- 数与式
- 正数和负数
- 有理数的初步认识
- + 数轴
- 数轴的三要素及其画法
- 用数轴上的点表示有理数
- 利用数轴比较有理数的大小
- 数轴上两点之间的距离
- 数轴上的动点问题
- 根据点在数轴的位置判断式子的正负
- 相反数
- 绝对值
- 有理数大小比较
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
已知数轴上,点O为原点,点A表示的数为9,动点B,C在数轴上移动,且总保持BC=2(点C在点B右侧),设点B表示的数为m.

(1) 如图1,当B,C在线段OA上移动时,
① 若B为OA中点,则AC= ;
② 若B,C移动到某一位置时,恰好满足AC=OB,求此时m的值;
(2) 当线段BC沿射线AO方向移动时,若存在AC-OB=
AB,求满足条件的m值.


(1) 如图1,当B,C在线段OA上移动时,
① 若B为OA中点,则AC= ;
② 若B,C移动到某一位置时,恰好满足AC=OB,求此时m的值;
(2) 当线段BC沿射线AO方向移动时,若存在AC-OB=

(背景知识)数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B两点之间的距离AB=|a–b|,线段AB的中点表示的数为
.
(问题情境)如图,数轴上点A表示的数为–2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.
设运动时间为t秒(t>0).
(综合运用)(1)填空:①A、B两点间的距离AB=__________,线段AB的中点表示的数为__________;
②用含t的代数式表示:t秒后,点P表示的数为__________;点Q表示的数为__________.
(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;
(3)求当t为何值时,PQ=
AB;
(4)若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.

(问题情境)如图,数轴上点A表示的数为–2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.
设运动时间为t秒(t>0).
(综合运用)(1)填空:①A、B两点间的距离AB=__________,线段AB的中点表示的数为__________;
②用含t的代数式表示:t秒后,点P表示的数为__________;点Q表示的数为__________.
(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;
(3)求当t为何值时,PQ=

(4)若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.

阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是(A,B)的好点.
例如,如图1,点A表示的数为-1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的好点;
又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的好点,但点D是(B,A)的好点.

知识运用:如图2,M、N为数轴上两点,点M所表示的数为-2,点N所表示的数为4.
(1)数_______________________ 所表示的点是(M,N)的好点;
(2)数________________________ 所表示的点是(N,M)的好点;
(温馨提示:注意考虑M,N的左侧、右侧,不要漏掉答案)
(3)如图(3)A,B为数轴上的两点,点A所表示的数为-20,点B表示的数为 40,现有一只电子蚂蚁P从点B出发,以2单位每秒的速度一直向左运动,
①当t为何值时,P是(A,B)的好点?
②当t为何值时,P是(B,A)的好点?
例如,如图1,点A表示的数为-1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的好点;
又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的好点,但点D是(B,A)的好点.

知识运用:如图2,M、N为数轴上两点,点M所表示的数为-2,点N所表示的数为4.
(1)数_______________________ 所表示的点是(M,N)的好点;
(2)数________________________ 所表示的点是(N,M)的好点;

(温馨提示:注意考虑M,N的左侧、右侧,不要漏掉答案)
(3)如图(3)A,B为数轴上的两点,点A所表示的数为-20,点B表示的数为 40,现有一只电子蚂蚁P从点B出发,以2单位每秒的速度一直向左运动,
①当t为何值时,P是(A,B)的好点?
②当t为何值时,P是(B,A)的好点?

已知数轴上有两点
,
对应的数分别为
,
,点
为数轴上一动点,对应点的数为
.
(1)若点
到点
,点
的距离相等,则点
对应的数为________.
(2)数轴上是否存在点
,使点
到点
、点
的距离之和为8?若存在,请求出
的值;若不存在,请说明理由.
(3)当点
以每秒
的单位长度的速度从
(原点)向左运动,同时点
以每秒
个单位长度的速度向左运动,点
以每秒
个单位长度的速度向左运动,问它们同时出发,几秒后点
到点
、点
的距离相等?






(1)若点




(2)数轴上是否存在点





(3)当点










如图,点A,B在数轴上表示的数分别为-4和+16,A,B两点间的距离可记为AB

(1) 点C在数轴上A,B两点之间,且AC=BC,则C点对应的数是_________
(2) 点C在数轴上A,B两点之间,且BC=4AC,则C点对应的数是_________
(3) 点C在数轴上,且AC+BC=30,求点C对应的数?
(4) 若点A在数轴上表示的数是a,B表示的数是b,则AB=_________

(1) 点C在数轴上A,B两点之间,且AC=BC,则C点对应的数是_________
(2) 点C在数轴上A,B两点之间,且BC=4AC,则C点对应的数是_________
(3) 点C在数轴上,且AC+BC=30,求点C对应的数?
(4) 若点A在数轴上表示的数是a,B表示的数是b,则AB=_________
如图,已知A,B分别为数轴上两点,点A表示的数是-30,点B表示的数是50

(1)请写出线段AB中点M表示的数是__________
(2)若动点P从点B出发,以每秒3个单位长度的速度沿数轴向左运动,同时另一动点Q恰好从A点出发,以每秒两个单位长度的速度沿数轴也向左运动,设P,Q两点在数轴上的C点相遇,求C点表示的数是多少?
(3)若点P运动到数轴上某一位置,使点P到点A的距离是点P到点B的距离的2倍,求出此时点P表示的数。

(1)请写出线段AB中点M表示的数是__________
(2)若动点P从点B出发,以每秒3个单位长度的速度沿数轴向左运动,同时另一动点Q恰好从A点出发,以每秒两个单位长度的速度沿数轴也向左运动,设P,Q两点在数轴上的C点相遇,求C点表示的数是多少?
(3)若点P运动到数轴上某一位置,使点P到点A的距离是点P到点B的距离的2倍,求出此时点P表示的数。
认真阅读下面的材料,完成有关问题:
材料:在学习绝对值时,我们已了解绝对值的几何意义,如|5-3|表示5、3在数轴上对应的两点之间的距离;又如|5+3|=|5-(-3)|,所以|5+3|表示5、-3在数轴上对应的两点之间的距离。因此,一般地,点A,B在数轴上分别表示有理数a,b,那么A,B之间的距离(也就是线段AB的长度)可表示为|a-b|。
因此我们可以用绝对值的几何意义按如下方法求
的最小值;
即数轴上x与1对应的点之间的距离,
即数轴上x与2对应的点之间的距离,把这两个距离在同一个数轴上表示出来,然后把距离相加即可得原式的值.
设A、B、P三点对应的数分别是1、2、x.
当1≤x≤2时,即P点在线段AB上,此时
;
当x>2时,即P点在B点右侧,此时
=PA+PB=AB+2PB>AB;
当x <1时,即P点在A点左侧,此时
=PA+PB=AB+2PA>AB;
综上可知,当1≤x≤2时(P点在线段AB上),
取得最小值为1.



请你用上面的思考方法结合数轴完成以下问题:
(1)满足
的x的取值范围是 。
(2)求
的最小值为 ,最大值为 。
备用图:

材料:在学习绝对值时,我们已了解绝对值的几何意义,如|5-3|表示5、3在数轴上对应的两点之间的距离;又如|5+3|=|5-(-3)|,所以|5+3|表示5、-3在数轴上对应的两点之间的距离。因此,一般地,点A,B在数轴上分别表示有理数a,b,那么A,B之间的距离(也就是线段AB的长度)可表示为|a-b|。
因此我们可以用绝对值的几何意义按如下方法求



设A、B、P三点对应的数分别是1、2、x.
当1≤x≤2时,即P点在线段AB上,此时

当x>2时,即P点在B点右侧,此时

当x <1时,即P点在A点左侧,此时

综上可知,当1≤x≤2时(P点在线段AB上),




请你用上面的思考方法结合数轴完成以下问题:
(1)满足

(2)求

备用图:


如图1,点A,B,O,C为数轴上四点,点A对应数
,点O对应0,点C对应3,
(AB表示点A到点B的距离).

(1)填空:点C到原点O的距离______,点B对应的数______.(用含有a的式子)
(2)如图2,将一刻度尺放在数轴上,刻度尺上“6cm”和“8.7cm”分别对应数轴上的点O和点C,若
,求a的值和点A在刻度尺上对应的刻度。
(3)如图3,在(2)的条件下,点A以1单位长度/秒的速度向右运动,同时点C向左运动,若运动3秒时,点A和点C到原点O的距离相等,求点C的运动速度.



(1)填空:点C到原点O的距离______,点B对应的数______.(用含有a的式子)
(2)如图2,将一刻度尺放在数轴上,刻度尺上“6cm”和“8.7cm”分别对应数轴上的点O和点C,若

(3)如图3,在(2)的条件下,点A以1单位长度/秒的速度向右运动,同时点C向左运动,若运动3秒时,点A和点C到原点O的距离相等,求点C的运动速度.
动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,运动到3秒钟时,两点相距15个单位长度.已知动点A、B的运动速度比之是3:2(速度单位:1个单位长度/秒).
(1)求两个动点运动的速度;
(2)A、B两点运动到3秒时停止运动,请在数轴上标出此时A、B两点的位置;
(3)若A、B两点分别从(2)中标出的位置再次同时开始在数轴上运动,运动的速度不变,运动的方向不限,问:经过几秒钟,A、B两点之间相距4个单位长度?
(1)求两个动点运动的速度;
(2)A、B两点运动到3秒时停止运动,请在数轴上标出此时A、B两点的位置;
(3)若A、B两点分别从(2)中标出的位置再次同时开始在数轴上运动,运动的速度不变,运动的方向不限,问:经过几秒钟,A、B两点之间相距4个单位长度?
如图,已知数轴上点A表示的数为a,点B表示的数为b,且满足
.
(1)写出a、b及AB的距离:a=________;b=________;AB=________.
(2)若动点P从点A出发,以每秒3个点位长度沿数轴向右匀速运动,动点Q从点B出发,以每秒5个单位长度向右匀速运动,若P、Q同时出发,问点Q运动多少秒追上点P?


(1)写出a、b及AB的距离:a=________;b=________;AB=________.
(2)若动点P从点A出发,以每秒3个点位长度沿数轴向右匀速运动,动点Q从点B出发,以每秒5个单位长度向右匀速运动,若P、Q同时出发,问点Q运动多少秒追上点P?

