- 数与式
- + 有理数
- 正数和负数
- 有理数的初步认识
- 数轴
- 相反数
- 绝对值
- 有理数大小比较
- 有理数的运算
- 实数
- 代数式
- 因式分解
- 分式
- 二次根式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,点A,B,C在数轴上表示的数分别是-3,3和1.动点P,Q两同时出发,动点P从点A出发,以每秒6个单位的速度沿A→B→A往返运动,回到点A停止运动;动点Q从点C出发,以每秒1个单位的速度沿C→B向终点B匀速运动.设点P的运动时间为t(s).
(1)当点P到达点B时,求点Q所表示的数是多少;
(2)当t=0.5时,求线段PQ的长;
(3)当点P从点A向点B运动时,线段PQ的长为________(用含t的式子表示);
(4)在整个运动过程中,当P,Q两点到点C的距离相等时,直接写出t的值.
(1)当点P到达点B时,求点Q所表示的数是多少;
(2)当t=0.5时,求线段PQ的长;
(3)当点P从点A向点B运动时,线段PQ的长为________(用含t的式子表示);
(4)在整个运动过程中,当P,Q两点到点C的距离相等时,直接写出t的值.

如图,在数轴上,点
表示
,点
表示
,点
表示
.动点
从点
出发,沿数轴正方向以每秒
个单位的速度匀速运动;同时,动点
从点
出发,沿数轴负方向以每秒
个单位的速度匀速运动.设运动时间为
秒.
(1)当
为何值时,
、
两点相遇?相遇点
所对应的数是多少?
(2)在点
出发后到达点
之前,求
为何值时,点
到点
的距离与点
到点
的距离相等;
(3)在点
向右运动的过程中,
是
的中点,在点
到达点
之前,求
的值.













(1)当




(2)在点







(3)在点







如图,在数轴上有 A 、B 、C 、D 四个点,分别对应的数为 a ,b , c , d ,且满足 a ,b 是方程| x+7|=1的两个解(a <b),且(c -12)2 与| d -16 |互为相反数.

(1)填空: a = 、b = 、 c = 、 d = ;
(2)若线段 AB 以 3 个单位/ 秒的速度向右匀速运动,同时线段CD 以 1 单位长度/ 秒向左匀速运动,并设运动时间为t 秒,A 、B 两点都运动在线段CD 上(不与C , D 两个端点重合),若BD=2AC ,求t 的值;
(3)在(2)的条件下,线段 AB ,线段CD 继续运动,当点 B 运动到点 D 的右侧时,问是否存在时间t ,使 BC=3AD ?若存在,求t 的值;若不存在,说明理由.

(1)填空: a = 、b = 、 c = 、 d = ;
(2)若线段 AB 以 3 个单位/ 秒的速度向右匀速运动,同时线段CD 以 1 单位长度/ 秒向左匀速运动,并设运动时间为t 秒,A 、B 两点都运动在线段CD 上(不与C , D 两个端点重合),若BD=2AC ,求t 的值;
(3)在(2)的条件下,线段 AB ,线段CD 继续运动,当点 B 运动到点 D 的右侧时,问是否存在时间t ,使 BC=3AD ?若存在,求t 的值;若不存在,说明理由.
同学们都知道,
表示5与
之差的绝对值,实际上也可以理解为5与
两数在数轴上所对应的两点之间的距离.回答下列问题:
(1)
_______.
(2)找出所有符合条件的整数
,使得
成立,这样的整数是______.
(3)对于任何有理数
,
的最小值是______.
(4)对于任何有理数
,
的最小值是_____,此时
的值是______.



(1)

(2)找出所有符合条件的整数


(3)对于任何有理数


(4)对于任何有理数



如图1,已知数轴上有三点A,B,C.点A,C对应的数分别是-40和20,点B是AC的中点.

(1)请直接写出点B对应的数: ;
(2)如图2,动点P,Q分别从A,C两点同时出发向左运动,点P,Q的速度分别为2个单位长度/秒,3个单位长度/秒,点E为线段PQ的中点.设运动的时间为t秒(t > 0).
①当t为何值时,点B与点E的距离是5个单位长度?
②当点E在点A的右侧时,m▪AE+QC的值不随时间的变化而改变,请求出m的值.

(1)请直接写出点B对应的数: ;
(2)如图2,动点P,Q分别从A,C两点同时出发向左运动,点P,Q的速度分别为2个单位长度/秒,3个单位长度/秒,点E为线段PQ的中点.设运动的时间为t秒(t > 0).
①当t为何值时,点B与点E的距离是5个单位长度?
②当点E在点A的右侧时,m▪AE+QC的值不随时间的变化而改变,请求出m的值.
如图,数轴上点
,
表示的数
,
满足
,点
为线段
上一点(不与
,
重合),
,
两点分别从
,
同时向数轴正方向移动,点
运动速度为每秒2个单位长度,点
运动速度为每秒3个单位长度,设运动时间为
秒(
).

(1)直接写出
______,
______;
(2)若
点表示的数是0.
①
,则
的长为______(直接写出结果);
②点
,
在移动过程中,线段
,
之间是否存在某种确定的数量关系,判断并说明理由;
(3)点
,
均在线段
上移动,若
,且
到线段
的中点
的距离为3,请求出符合条件的点
表示的数.


















(1)直接写出


(2)若

①


②点




(3)点








如图,数轴上点A表示的数为﹣3,点B表示的数为3,若在数轴上存在点P,使得AP+BP=m,则称点P为点A和B的“m级精致点”,例如,原点O表示的数为0,则AO+BO=3+3=6,则称点O为点A和点B的“6级精致点”,根据上述规定,解答下列问题:
(1)若点C轴在数轴上表示的数为﹣5,点C为点A和点B的“m级精致点”,则m= ;
(2)若点D是数轴上点A和点B的“8级精致点”,求点D表示的数;
(3)如图,数轴上点E和点F分别表示的数是﹣2和4,若点G是点E和点F的“m级精致点”,且满足GE=3GF,求m的值.
(1)若点C轴在数轴上表示的数为﹣5,点C为点A和点B的“m级精致点”,则m= ;
(2)若点D是数轴上点A和点B的“8级精致点”,求点D表示的数;
(3)如图,数轴上点E和点F分别表示的数是﹣2和4,若点G是点E和点F的“m级精致点”,且满足GE=3GF,求m的值.

认真阅读下面的材料,完成有关问题.
材料:在学习绝对值时,老师教过我们绝对值的几何含义,一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.
问题(1):点A、B、C在数轴上分别表示有理数x、﹣2、1,那么A到B的距离与A到C的距离之和可表示为 (用含绝对值的式子表示).
问题(2):利用数轴探究:①找出满足|x﹣3|+|x+1|=6的x的所有值是 ;
②设|x﹣3|+|x+1|=p,当x的值取在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是 ;当x的值取在 的范围时,|x|+|x﹣2|的最小值是 .
问题(3):求|x﹣3|+|x﹣2|+|x+1|的最小值以及此时x的值.
材料:在学习绝对值时,老师教过我们绝对值的几何含义,一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.
问题(1):点A、B、C在数轴上分别表示有理数x、﹣2、1,那么A到B的距离与A到C的距离之和可表示为 (用含绝对值的式子表示).
问题(2):利用数轴探究:①找出满足|x﹣3|+|x+1|=6的x的所有值是 ;
②设|x﹣3|+|x+1|=p,当x的值取在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是 ;当x的值取在 的范围时,|x|+|x﹣2|的最小值是 .
问题(3):求|x﹣3|+|x﹣2|+|x+1|的最小值以及此时x的值.