- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 实际问题中的组合计数问题
- 代数中的组合计数问题
- 几何组合计数问题
- + 分组分配问题
- x+y+z=n的整数解的个数
- 其他组合计数模型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某班级要从4名男士、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为
A.14 | B.24 | C.28 | D.48 |
某次运动会中,主委会将甲、乙、丙、丁四名志愿者安排到三个不同比赛项目中担任服务工作,每个项目至少1人,若甲、乙两人不能到同一个项目,则不同的安排方式有( )
A.24种 | B.30种 | C.36种 | D.72种 |
某科研单位准备把7名大学生分配到编号为1,2,3的三个实验室实习,若要求每个实验室分配到的大学生人数不小于该实验室的编号,则不同的分配方案的种数为( )
A.280 | B.455 | C.355 | D.350 |
某地举办科技博览会,有
个场馆,现将
个志愿者名额分配给这
个场馆,要求每个场馆至少有一个名额且各场馆名额互不相同的分配方法共有( )种



A.![]() | B.![]() | C.![]() | D.![]() |
将4名志愿者分别安排到火车站、轮渡码头、机场工作,要求每一个地方至少安排一名志愿者,其中甲、乙两名志愿者不安排在同一个地方工作,则不同的安排方法共有
A.24种 | B.30种 | C.32种 | D.36种 |
为了宣传校园文化,让更多的学生感受到校园之美,某校学生会组织了6个小队在校园最具有代表性的3个地点进行视频拍摄,若每个地点至少有1支小队拍摄,则不同的分配方法有_____ 种(用数字作答)
将3名教师,5名学生分成3个小组,分别安排到甲、乙、丙三地参加社会实践活动,每地至少去1名教师和1名学生,则不同的安排方法总数为( )
A.1800 | B.1440 | C.300 | D.900 |