- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 排列与排列数公式
- 排列的意义理解
- 排列数的计算
- 用排列数公式证明
- 排列数方程和不等式
- 排列应用题
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
定义:在等式

中,把
,
,
,…,
叫做三项式的
次系数列(如三项式的1次系数列是1,1,1).
(1)填空:三项式的2次系数列是_______________;
三项式的3次系数列是_______________;
(2)由杨辉三角数阵表可以得到二项式系数的性质
,类似的请用三项式
次系数列中的系数表示
(无须证明);
(3)求
的值.









(1)填空:三项式的2次系数列是_______________;
三项式的3次系数列是_______________;
(2)由杨辉三角数阵表可以得到二项式系数的性质



(3)求

有两排座位,前排
个座位,后排
个座位,现安排
人就座,规定前排中间的
个座位不能坐,并且这两人不左右相邻,那么不同的坐法的种数是( )




A.![]() | B.![]() | C.![]() | D.![]() |