- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 加法原理与乘法原理
- + 排列
- 排列与排列数公式
- 排列应用题
- 组合
- 二项式定理
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
8人排成一排照相,分别求下列条件下的不同照相方式的种数.
(1)其中甲、乙相邻,丙、丁相邻;
(2)其中甲、乙不相邻,丙、丁不相邻;
(要求写出解答过程,并用数字作答)
(1)其中甲、乙相邻,丙、丁相邻;
(2)其中甲、乙不相邻,丙、丁不相邻;
(要求写出解答过程,并用数字作答)
已知集合M={1,2,3},N={1,2,3,5}从两个集合中各取一个元素作为点的坐标
在直角坐标系中能确定不同点的个数是( )
在直角坐标系中能确定不同点的个数是( )
A.C![]() | B.C![]() | C.A![]() ![]() | D.A![]() ![]() |
计划在某画廊展出10幅不同的画, 其中1幅水彩画,4幅油画,5幅国画排成一列,要求同一品种挂在一起, 水彩画不在两端,那么不同的排列方式有( )种
A.A![]() | B.A![]() ![]() |
C.A![]() ![]() | D.A![]() ![]() |
有
位男生,
位女生和
位老师站在一起照相,要求老师必须站中间,与老师相邻的不能同时为男生或女生,则这样的排法种数是( )



A.![]() | B.![]() | C.![]() | D.![]() |
如图,用4种不同颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数有


A.72 | B.96 |
C.108 | D.120 |
5名男生、2名女生站成一排照相:
(1)两名女生都不站在两端,有多少不同的站法?
(2)两名女生要相邻,有多少种不同的站法?
(3)两名女生不相邻,有多少种不同的站法?
(4)女生甲不在左端,女生乙不在右端,有多少种不同的站法?
(1)两名女生都不站在两端,有多少不同的站法?
(2)两名女生要相邻,有多少种不同的站法?
(3)两名女生不相邻,有多少种不同的站法?
(4)女生甲不在左端,女生乙不在右端,有多少种不同的站法?
记者要为4名志愿者和他们帮助的2位老人照相,要求排成一排,2位老人不相邻,不同的排法共有( )种.
A.240 | B.360 | C.480 | D.720 |
某班班会,准备从包括甲、乙两人的七名同学中选派
名学生发言,要求甲、乙两人中至少有
人参加,则甲、乙都被选中且发言时不相邻的概率为__________.

