- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- + 计数原理
- 加法原理与乘法原理
- 排列
- 组合
- 二项式定理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
高三要安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是()
A.1800 | B.3600 | C.4320 | D.5040 |
某单位从6男4女共10名员工中,选出3男2女共5名员工,安排在周一到周五的5个夜晚值班,每名员工值一个夜班且不重复值班,其中女员工甲不能安排在星期一、星期二值班,男员工乙不能安排在星期二值班,其中男员工丙必须被选且必须安排在星期五值班,则这个单位安排夜晚值班的方案共有( )
A.960种 | B.984种 | C.1080种 | D.1440种 |
定义:在等式

中,把
,
,
,…,
叫做三项式的
次系数列(如三项式的1次系数列是1,1,1).
(1)填空:三项式的2次系数列是_______________;
三项式的3次系数列是_______________;
(2)由杨辉三角数阵表可以得到二项式系数的性质
,类似的请用三项式
次系数列中的系数表示
(无须证明);
(3)求
的值.









(1)填空:三项式的2次系数列是_______________;
三项式的3次系数列是_______________;
(2)由杨辉三角数阵表可以得到二项式系数的性质



(3)求

某2017年夏令营组织5名营业员参观北京大学、清华大学等五所大学,要求每人任选一所大学参观,则有且只有两个人选择北京大学的不同方案共有( )
A.240种 | B.480种 | C.640种 | D.1280种 |
现有排成一列的5个花盆,要将甲、乙两种花种在其中的2个花盆里(每个花盆种一种花),若要求每相邻的3个花盆里至少有一种花,则满足这样要求的不同的种法有______种(用数字作答).