- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- + 计数原理
- 加法原理与乘法原理
- 排列
- 组合
- 二项式定理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
、设
是1,2,…,n的一个排列,把排在
的左边且比
小的数的个数为
(
=1,2,…n)的顺序数,如在排列6,4,5,3,2,1中,5的顺序数为1,3的顺序数为0,则在1至 8这8个数的排列中,8的顺序数为2,7的顺序数为3,5的顺序数为3的不同排列的种数为 ()





A.120 | B.48 | C.144 | D.192 |
某地为上海“世博会”选拔了20名志愿者,他们的编号分别是1号、2号、…19号、20号.若要从中任意选取4人再按编号大小分成两组去做一些预备服务工作,其中两个编号较小的人在一组,两个编号较大的在另一组,那么确保5号与14号入选并被分配到同一组的选取种数是 ( )
A.16 | B.21 | C.24 | D.90 |
某班级在5人中选4人参加4×100米接力.如果第一棒只能从甲、乙、丙三人中产生,最后一棒只能从甲、乙两人中产生,则不同的安排棒次方案共有多少种.
用
代表红球,
代表蓝球,
代表黑球,由加法原理及乘法原理,从1个红球和1个篮球中取出若干个球的所有取法可由
的展开式
表示出来,如:“1”表示一个球都不取、“
”表示取出一个红球,面“
”用表示把红球和篮球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的篮球都取出或都不取出的所有取法的是







A.![]() | B.![]() | C.![]() | D.![]() |