- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 分层抽样的特征及适用条件
- 抽样比、样本总量、各层总数、总体容量的计算
- + 分层抽样的概率
- 设计分层抽样过程
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
党的十九大明确把精准脱贫作为决胜全面建成小康社会必须打好的三大攻坚战之一. 坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村真脱贫,坚持扶贫同扶智相结合,帮助贫困村中60户农民种植苹果、40户农民种植梨、20户农民种植草莓(每户仅扶持种植一种水果),为了更好地了解三种水果的种植与销售情况,现从该村随机选6户农民作为重点考察对象;
(1)用分层抽样的方法,应选取种植苹果多少户?
(2)在上述抽取的6户考察对象中随机选2户,求这2户种植水果恰好相同的概率.
(1)用分层抽样的方法,应选取种植苹果多少户?
(2)在上述抽取的6户考察对象中随机选2户,求这2户种植水果恰好相同的概率.
某工厂采用甲、乙两种不同生产方式生产某零件,现对两种生产方式所生产的这种零件的产品质量进行对比,其质量按测试指标可划分为:指标在区间
的为一等品;指标在区间
的为二等品,现分别从甲、乙两种不同生产方式所生产的零件中,各自随机抽取100件作为样本进行检测,测试指标结果的频率分布直方图如图所示:

若从甲种生产方式生产的这100件零件中按等级,利用分层抽样的方法抽取5件,再从这5件零件中随机抽取3件,求至少有1件一等品的概率;
该厂所生产这种零件,若是一等品每件可售50元,若是二等品每件可售20元
甲种生产方式每生产一件零件
无论是一等品还是二等品
的成本为10元,乙种生产方式每生产一件零件
无论是一等品还是二等品
的成本为18元
将频率分布直方图中的频率视作概率,用样本估计总体比较在甲、乙两种不同生产方式下,哪种生产方式生产的零件所获得的平均利润较高?











某校为了解高一实验班的数学成绩,采用抽样调查的方式,获取了
位学生在第一学期末的数学成绩数据,样本统计结果如下表:
(1)求
的值和实验班数学平均分的估计值;
(2)如果用分层抽样的方法从数学成绩小于
分的学生中抽取
名学生,再从这
名学生中选
人,求至少有一个学生的数学成绩是在
的概率.

分组 | 频数 | 频率 |
![]() | ![]() | |
![]() | | ![]() |
![]() | | ![]() |
![]() | | ![]() |
![]() | ![]() | |
![]() | | ![]() |
合计 | ![]() | ![]() |
(1)求

(2)如果用分层抽样的方法从数学成绩小于





已知某校高一、高二、高三的学生志愿者人数分别为180,180,90.现采用分层抽样的方法从中抽取5名学生去某敬老院参加献爱心活动,若再从这5人中抽取2人作为负责人,则事件“抽取的2名同学来自不同年级”的概率是( )
A.![]() | B.![]() | C.![]() | D.![]() |
为了弘扬传统文化,某市举办了“高中生诗词大赛”,现从全市参加比赛的学生中随机抽取
人的成绩进行统计,得到如图所示的频率分布直方图,其中成绩的分组区间为
,
,
,
.

(1)求频率分布直方图中
的值;
(2)在所抽取的
名学生中,用分层抽样的方法在成绩为
的学生中抽取了一个容量为
的样本,再从该样本中任意抽取
人,求
人的成绩均在区间
内的概率;
(3)若该市有
名高中生参赛,根据此次统计结果,试估算成绩在区间
内的人数.






(1)求频率分布直方图中

(2)在所抽取的






(3)若该市有


“微信运动”是手机
推出的多款健康运动软件中的一款,大学生M的微信好友中有400位好友参与了“微信运动”.他随机抽取了40位参与“微信运动”的微信好友(女20人,男20人)在某天的走路步数,经统计,其中女性好友走路的步数情况可分为五个类别:
、
步,(说明:“
”表示大于或等于0,小于2000,以下同理),
、
步,
、
步,
、
步,
、
步,且
、
、
三种类别的人数比例为
,将统计结果绘制如图所示的柱形图;男性好友走路的步数数据绘制如图所示的频率分布直方图.

(Ⅰ)若以大学生
抽取的微信好友在该天行走步数的频率分布,作为参与“微信运动”的所有微信好友每天走路步数的概率分布,试估计大学生
的参与“微信运动”的400位微信好友中,每天走路步数在
的人数;
(Ⅱ)若在大学生
该天抽取的步数在
的微信好友中,按男女比例分层抽取6人进行身体状况调查,然后再从这6位微信好友中随机抽取2人进行采访,求其中至少有一位女性微信好友被采访的概率.

















(Ⅰ)若以大学生



(Ⅱ)若在大学生


研究发现,北京 PM 2.5 的重要有土壤尘、燃煤、生物质燃烧、汽车尾气与垃圾焚烧、工业污染和二次无机气溶胶,其中燃煤的平均贡献占比约为 18%.为实现“节能减排”,还人民“碧水蓝天”,北京市推行“煤改电”工程,采用空气源热泵作为冬天供暖.进入冬季以来,该市居民用电量逐渐增加,为保证居民取暖,市供电部门对该市 100 户居民冬季(按 120 天计算)取暖用电量(单位:度)进行统计分析,得到居民冬季取暖用电量的频率分布直方图如图所示.

(1)求频率分布直方图中
的值;
(2)从这 100 户居民中随机抽取 1 户进行深度调查,求这户居民冬季取暖用电量在[3300,3400]的概率;
(3)在用电量为[3200,3250),[3250,3300),[3300,3350),[3350,3400]的四组居民中,用分层抽样的方法抽取 34 户居民进行调查,则应从用电量在[3200,3250)的居民中抽取多少户?

(1)求频率分布直方图中

(2)从这 100 户居民中随机抽取 1 户进行深度调查,求这户居民冬季取暖用电量在[3300,3400]的概率;
(3)在用电量为[3200,3250),[3250,3300),[3300,3350),[3350,3400]的四组居民中,用分层抽样的方法抽取 34 户居民进行调查,则应从用电量在[3200,3250)的居民中抽取多少户?
某名校从
年到
年考入清华,北大的人数可以通过以下表格反映出来.(为了方便计算,将
年编号为
,
年编为
,以此类推……)
(1)将这
年的数据分为人数不少于
人和少于
人两组,按分层抽样抽取
年,问考入清华、北大的人数不少于20的应抽多少年?在抽取的这
年里,若随机的抽取两年恰有一年考入清华、北大的人数不少于
的概率是多少?;
(2)根据最近
年的数据,利用最小二乘法求出与之间的线性回归方程,并用以预测
年该校考入清华、北大的人数.(结果要求四舍五入至个位)
参考公式:






年份![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
人数![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)将这






(2)根据最近


参考公式:

某精准扶贫帮扶单位,为帮助定点扶贫村真正脱贫,坚持扶贫同扶智相结合,帮助精准扶贫户利用互联网电商渠道销售当地特产苹果.苹果单果直径不同单价不同,为了更好的销售,现从该精准扶贫户种植的苹果树上随机摘下了50个苹果测量其直径,经统计,其单果直径分布在区间[50,95]内(单位:
),统计的茎叶图如图所示:

(Ⅰ)按分层抽样的方法从单果直径落在[80,85),[85,90)的苹果中随机抽取6个,再从这6个苹果中随机抽取2个,求这两个苹果单果直径均在[85,90)内的概率;
(Ⅱ)以此茎叶图中单果直径出现的频率代表概率.已知该精准扶贫户有20000个约5000千克苹果待出售,某电商提出两种收购方案:
方案
:所有苹果均以5.5元/千克收购;
方案
:按苹果单果直径大小分3类装箱收购,每箱装25个苹果,定价收购方式为:单果直径 在[50,65)内按35元/箱收购,在[65,90)内按50元/箱收购,在[90,95]内按35元/箱收购.包装箱与分拣装箱工费为5元/箱.请你通过计算为该精准扶贫户推荐收益最好的方案.


(Ⅰ)按分层抽样的方法从单果直径落在[80,85),[85,90)的苹果中随机抽取6个,再从这6个苹果中随机抽取2个,求这两个苹果单果直径均在[85,90)内的概率;
(Ⅱ)以此茎叶图中单果直径出现的频率代表概率.已知该精准扶贫户有20000个约5000千克苹果待出售,某电商提出两种收购方案:
方案

方案

为了解社会对学校办学质量的满意程度,某学校决定用分层抽样的方法从高中三个年级的家长委员会中共抽取
人进行问卷调查,已知高一、高二、高三、的家长委员会分别有
人,
人,
人.
求从三个年级的家长委员会分别应抽到的家长人数;
若从抽到的
人中随机抽取
人进行调查结果的对比,求这
人中至少有一人是高三学生家长的概率.








